
1.  Introduction
Soil moisture has a significant influence on water and energy fluxes between the subsurface, land surface, and the 
atmosphere (Chen & Hu, 2004). Accurate information on the spatio-temporal variability of soil moisture is crucial 
to better understand the role of soil moisture in terrestrial systems (Vereecken et al., 2022). Soil moisture can 
be estimated at various scales, indirectly with remote sensing (RS) observations and directly by in situ measure-
ments using electromagnetic techniques being the most commonly used methods. The resolution of RS-derived 
products is often coarse, spatially or temporally, and the data are subjected to various errors, especially in areas 
with dense vegetation coverage (Bauer-Marschallinger et al., 2019; Kim et al., 2020). On the other hand, in situ 
measurements are point-scale measurements and, therefore, do not provide area coverage (He et al., 2021).

Over the last decade, the CRNS has been introduced as an alternative method, providing real-time soil moisture 
estimation and bridging the gap between in-situ measurements and RS products. The CRNS footprint covers up to 
18 ha with a measurement depth of up to 80 cm (Bogena et al., 2015; Köhli et al., 2015; Zreda et al., 2008). The 
continuous development of CRNS technology has enabled SM monitoring under a variety of climatic conditions, 
which has promoted its application in hydrological modeling (R. Baatz et al., 2017), satellite product validation 
(Zhao et al., 2021), extreme weather event (drought and flood risk) assessment (Bogena et al., 2022), ecohydro-
logical (e.g., snow, precipitation, and vegetation) monitoring (Bogena et al., 2020), and agricultural management 
(Li et al., 2019). The advantages of CRNS have made it increasingly attractive, and large-scale CRNS networks 
have been established in Europe, the USA, Australia, and India for large-scale soil moisture monitoring with high 
temporal resolution, which can also benefit the multifaceted hydrological applications mentioned above.

However, it is neither economical nor feasible to measure area-wide soil moisture over large areas using CRNS. 
Therefore, it is important to establish a scientific and economical observation network that can cover all major 
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land use types and climatic zones in the study area while ensuring that the sensor coverage is representative of soil 
moisture patterns across the region. Then hydrological or land surface models can be combined with observations 
to effectively monitor soil moisture at larger scales, including unobserved locations, and validate the model's 
performance.

Nevertheless, modeling accuracy is often limited by uncertainties arising mainly from model forcings, parame-
ters, and initial conditions (R. Baatz et al., 2017; Freeze, 1975). Data assimilation (DA) is a technique to combine 
different information sources to update or correct the model predictions and improve the simulations (De Lannoy 
et al., 2014). The Ensemble Kalman filter (Evensen, 1994, 2003), a sequential filtering algorithm, is the most 
widely used DA technique and has been proven effective for nonlinear systems and high-dimensional problems 
(Camporese et al., 2009; Schöniger et al., 2012). The process of DA can be summarized in two steps: a forecast 
step and an analysis step. For the forecast step, the state estimation is only based on past data, while for the anal-
ysis step, the probability density of the state is propagated forward, considering the information from current 
measurements (McLaughlin, 2002).

Shuttleworth et al. (2013) developed the forward COsmic-ray Soil Moisture Interaction Code (COSMIC) model 
to enable rapid conversion of neutron counts to soil moisture values. Since then, COSMIC has been used as 
an observation operator in several studies for assimilating neutron counts into land surface models to improve 
soil moisture prediction (R. Baatz et al., 2017; Han et al., 2015, 2016; Patil et al., 2021; Rosolem et al., 2014; 
Shuttleworth et al., 2013). For example, R. Baatz et al. (2017) found that catchment-scale soil moisture prediction 
can be improved by assimilating soil moisture from a CRNS network and that joint estimation of state and param-
eters performs better than state estimation alone. To date, however, such assimilation experiments with CRNS 
data have been conducted only with land surface models that do not adequately describe lateral water movement 
and groundwater-land surface interactions (Kollet & Maxwell, 2008). Zhao et al. (2021) compared the CRNS 
data with simulated soil moisture using both the land surface model Community Land Model (CLM, version 3.5) 
and a coupled land surface-subsurface model (CLM-ParFlow). They found that the coupled model simulations 
showed less bias and reproduced better soil moisture dynamics than the CLM stand-alone, demonstrating the 
importance of considering lateral subsurface flow in subsurface hydrological simulations. Therefore, there is 
still strong interest in applying DA with coupled land surface-subsurface models to exploit the full potential of 
CRNS data.

In this work, the integrated Terrestrial System Modeling Platform (Kurtz et al., 2016; Shrestha et al., 2014) is 
used, which is a coupled atmosphere-land surface-subsurface model with the Parallel Data Assimilation Frame-
work (PDAF). The integrated model TSMP has been utilized in a number of studies (Furusho-Percot et al., 2019; 
Keune et al., 2016; Shrestha et al., 2015; Shrestha, Sulis, et al., 2018). Previous studies investigating the assim-
ilation of soil moisture measurements with TSMP-PDAF focused on synthetic experiments, small catchments, 
or greatly simplified the representation of spatial heterogeneity in the real catchment (Gebler et al., 2019; Hung 
et al., 2022; Zhang et al., 2018). Recently, Hung et al. (2022) adopted the conventional vertical weighting calcula-
tion of CRNS data from Franz et al. (2012) for the assimilation of soil moisture data in a virtual reality experiment 
with TSMP and discovered that DA improved the vertical soil moisture profile characterization and soil moisture 
estimation for the surrounding grid cells.

In this study, soil moisture from a distributed network of 12 CRNS in the Rur catchment was assimilated into 
TSMP to investigate whether the sensor density is sufficient to represent the SM for the whole catchment. So far, 
to the best of our knowledge, this is the first study to assimilate soil moisture from such a high-density CRNS 
monitoring network into the integrated model. Our work, for the first time, explores the information content of 
CRNS observations through fully coupled TSMP and data assimilation techniques. It unlocks the full potential of 
CRNS to characterize the SM and ET across a relatively large catchment. The main objectives of this study are 
to investigate: (a) how effective a CRNS network can be in improving soil moisture characterization with fully 
integrated terrestrial models such as TSMP at the catchment scale; (b) whether the assimilation of CRNS soil 
moisture data can result in better prediction of ET and discharge; and (c) how DA performance can vary between 
years with different hydrological conditions (wet vs. dry).
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2.  Materials and Methods
2.1.  Study Area

The Rur catchment covers an area of 2,354  km 2 and is located in west-
ern Germany, including small portions of Belgium and the Netherlands. 
Figure 1 shows the Digital Elevation Model (DEM) for the Rur catchment 
obtained from SRTM 90m Version 4 (Jarvis et  al., 2008). The Rur River 
flows from the Eifel low-mountain range in the south with a maximum alti-
tude of 690 m a.s.l. to the northern lowlands with a minimum altitude of 
15 m a.s.l. The land use types in the Rur catchment are arable agriculture in 
the north (mainly maize and wheat) and grassland, coniferous and decidu-
ous forests in the south (R. Baatz et al., 2017; Waldhoff & Lussem, 2015). 
From the northern to the southern part of the catchment, long-term average 
annual precipitation ranges from 650 to 1,300  mm, the mean annual air 
temperature decreases from 10 to 7°C, and the mean annual potential evap-
otranspiration ranges from 450 to 850 mm (Bogena et al., 2018; Montzka 
et al., 2008). The mean river discharge in the upper catchment (controlled 
by the in situ station Erkensruhr-Einruhr (see Figure 1)) was about 0.26 m 3/s 
from 2013 to 2022.

2.2.  Terrestrial System Modeling Platform (TSMP)

TSMP is a modular coupled biogeophysical terrestrial systems model consist-
ing of atmospheric, surface, and subsurface models (Shrestha et al., 2014). 
The three component models that make up TSMP are the numerical weather 
prediction model COSMO (Consortium for Small Scale Modeling) (Baldauf 
et al., 2011), the Community Land Model CLM3.5 (Oleson et al., 2004, 2008) 
from the National Center for Atmospheric Research, and the 3D variably 
saturated groundwater flow model ParFlow (Kollet & Maxwell, 2006) for the 
subsurface. These three models are two-way coupled by the Ocean Atmos-
phere Sea Ice Soil coupling Model Coupling Toolkit (OASIS-MCT, version 
3) (Valcke, 2013). The OASIS-MCT coupler is included in the model plat-
form and is used for the exchange of variables and fluxes between differ-
ent sub-models. In this work, only the land surface model CLM3.5 and the 
subsurface model ParFlow were used.

The biophysical processes simulated by the land surface model CLM3.5 include energy and water exchange 
between the land and atmosphere, snow accumulation and melting, energy and water transport in the soil, and 
stomatal physiology and photosynthesis (Oleson et al., 2004, 2008). Spatial land surface heterogeneity is repre-
sented by the nested subgrid hierarchy in CLM (Oleson et al., 2008). Each grid cell is divided into different types 
of land units (glacier, lake, wetland, urban, and vegetated), and each land unit in the grid cell can have a different 
number of snow/soil columns, and each column can have multiple plant functional types (PFTs) with different 
plant physiological parameters (Bonan et al., 2002; Oleson et al., 2008), for example, leaf area index (LAI). The 
input LAI used in this study was taken from previous studies, in which the study area included the Rur domain 
(Sulis et al., 2015, 2018). The primary function of the CLM in the TSMP is to calculate evapotranspiration from 
the ground and vegetation. See Appendix A for details on the computing of evapotranspiration by CLM.

In the coupled model TSMP, the hydrological processes of the CLM are replaced by ParFlow (Ashby & 
Falgout, 1996; Jones & Woodward, 2001; Kollet & Maxwell, 2006; Maxwell, 2013). ParFlow solves the 3D 
Richards equation (Richards, 1931) for groundwater flow in the unsaturated and saturated zones and the kine-
matic wave equation (Lighthill & Whitham,  1955) for overland flow. The coupled partial differential equa-
tions for subsurface flow and surface water flow are solved by the Newton-Krylov nonlinear solver (Jones & 
Woodward,  2001). Moreover, ParFlow was created for parallel computing systems and can effectively solve 
large-scale problems at high resolution, which has been proven in numerous studies (Hung et al., 2022; Jones 
& Woodward,  2001; Kollet & Maxwell,  2006,  2008). In addition, ParFlow employs a terrain-following grid 

Figure 1.  Map of the Rur catchment with the altitude above sea level and 
the locations of the cosmic-ray neutron sensors, eddy covariance stations and 
discharge station. The Rur catchment is situated in western Germany.
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transformation with variable vertical discretization, which can resolve groundwater problems with high topo-
graphic gradients and reduce the computation time (Maxwell, 2013).

The coupler OASIS-MCT controls the exchange of fluxes and state variables between CLM and ParFlow, ensur-
ing that the spatial and temporal scales of the fluxes exchanged by the different components remain consistent 
(Shrestha et al., 2014; Valcke, 2013). In the coupled model TSMP, ParFlow provides the pressure and saturation 
of the upper 10 subsurface layers to CLM, while in turn, CLM provides the upper boundary conditions, that is, net 
infiltration or exfiltration, to ParFlow. The net infiltration includes precipitation, interception, total evaporation, 
and total transpiration (Zhang et al., 2018). More comprehensive information about the implementation of the 
coupler in TSMP and its operation is presented by Kurtz et al. (2016).

2.3.  Data

2.3.1.  Atmospheric Forcing

The high-resolution atmospheric reanalysis data set COSMO-REA6 (0.055° (6  km)) is used as forcing data 
for the land surface model CLM (Bollmeyer et al., 2015; Wahl et al., 2017). The reanalysis data set was devel-
oped by the German Meteorological Service (Deutscher Wetterdienst; DWD) based on the numerical weather 
prediction (NWP) model COSMO (Baldauf et al., 2011), covering the period 1995–2020, and is continuously 
being extended. Forcing data include precipitation, air temperature, air pressure, wind velocity, specific humidity, 
incoming shortwave radiation, and incoming longwave radiation. In addition, to maintain consistency with the 
atmospheric forcings, daily air pressure and air humidity from COSMO-REA6 were used to calculate the weight-
ing of soil moisture based on the revised approach from Schrön et al. (2017). The coupled model CLM-ParFlow 

of the Rur domain has a horizontal spatial resolution of 500 m for the land 
surface and a total depth of 100 m for the subsurface.

2.3.2.  Soil Data

The high-resolution regional soil map BK50 (Geologischer Dienst 
Nordrhein-Westfalen,  2009) at a scale of 1:50,000 (https://www.openge-
odata.nrw.de/produkte/geologie/boden/BK/ISBK50/; last access: 7 July 
2023) and the European Soil Database (ESDB) (Pano, 2006) were utilized 
to obtain the soil texture and compute its hydrological parameters. Sand and 
clay contents (see Figure 2) were derived from BK50, and bulk density was 
obtained from ESDB.

The aquifer permeability for the layers below the soil layers was taken from 
the 100  m resolution regional hydraulic conductivity (Ks) map (Figure  3) 
from the North Rhine-Westphalia Geological Survey database.

2.3.3.  CRNS and Flux Data

The CRNS detects epithermal neutrons produced by cosmic radiation, which 
can be used to measure soil moisture because the detected neutron count rate 

Figure 2.  Sand (a) and clay content (b) for the Rur catchment derived from the BK50 soil map.

Figure 3.  Hydraulic conductivity of the bedrock for the Rur catchment.
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is inversely correlated with the amount of hydrogen in the soil (Zreda et al., 2008). The CRNS soil moisture data 
were obtained from the “Data set of COSMOS-Europe: A European network of Cosmic-Ray Neutron Soil Mois-
ture Sensors” (Bogena et al., 2022). The raw neutron count data were measured by the CRNS stations and then 
transformed into soil moisture values with harmonized correction and processing by Bogena et al. (2022). There 
are 13 CRNS stations (Andreasen et al., 2017; R. Baatz et al., 2017; Bogena et al., 2022) relatively evenly distrib-
uted over the domain (Figure 1), and detailed information is presented in Table 1 for all sites. In this work, the 
soil moisture measured by CRNS is used for DA and as independent verification data for jackknife simulations. 
The CRNS stations Rollesbroich1 and Rollesbroich2 are regarded as one site since they are too close and located 
in the same model grid cell, and the average values for the two sites were used in this study. This is, therefore, 
equivalent to having 12 CRNS sites for final assimilation.

The observed flux data of three eddy covariance (EC) stations (Rollesbroich, Wüstebach, and Selhausen) and 
discharge data of the Erkensruhr-Einruhr in situ station from TERENO (TERrestrial ENvironmental Observato-
ries; https://www.tereno.net/; last access: 7 July 2023) were used to verify the evapotranspiration and discharge 
simulations. The runoff station in the upstream catchment was chosen for validation because the downstream 
catchment is highly influenced by water management activities (e.g., water reservoirs, wastewater treatment 
plant discharges, opencast lignite mining) (Bogena et al., 2005). EC measurements have been taken with a sonic 
anemometer (CSAT3, Campbell Scientific Inc., Logan, USA) to measure the 3D wind components, an open-
path gas analyzer (Li7500, LI-COR Inc., Lincoln, USA) to determine the H2O and CO2 concentrations in the air, 
and an air temperature and humidity sensor (HMP45C, Vaisala Inc., Helsinki, Finland). Conversions to fluxes, 
including uncertainty information, are based on Mauder et  al.  (2013). The daily EC data were gap-filled by 
grass reference evapotranspiration calculated from the FAO Penman-Monteith equation (Allan et al., 1998). The 
non-closure of the energy balance of the EC data was not corrected. For further information on EC measurements 
and processing, the reader is referred to Bogena et al. (2018).

2.4.  Data Assimilation Methodology

The EnKF was used in this work to assimilate soil moisture measured by CRNS into the coupled model 
TSMP. The EnKF sequentially alternates model prediction and filter updating steps (also called filter analysis), 
either state updates alone or joint state-parameter updates. The effectiveness of the filter depends on the accurate 
determination of the forecast error covariance from the ensemble, and the sources of forecast errors are mainly 
uncertain initial conditions, forcing data, and model equations (Turner et al., 2008). To ensure that errors from 
various sources are taken into consideration to improve assimilation results, perturbation is used to create an 
ensemble that takes into account the different error sources. In this work, the ensemble of model realizations takes 

Name
Latitude 

(°C)
Longitude 

(°C)
Altitude 

(m)
Mean annual 

precipitation (mm y −1)
Mean air 

temperature (°C) Landuse

Merzenhausen 50.930 6.297 91 718 10.3 Crop

Rollesbroich1 50.622 6.304 515 1,018 7 Grassland

Rollesbroich2 50.624 6.305 506 1,018 7 Grassland

Gevenich 50.989 6.324 107 718 10.3 Crop

Ruraue 50.862 6.427 100 718 10.3 Grassland

Wildenrath 51.133 6.169 72 722 10.3 Needleleaf

Wüstebach 50.505 6.331 605 1,401 7 Spruce

Heinsberg 51.041 6.104 58 722 10.3 Crop

Kall 50.501 6.526 505 857 8 Grassland

Selhausen 50.866 6.447 101 718 10.3 Crop

Schönseiffen 50.515 6.376 611 870 7 Grassland

Kleinhau 50.722 6.372 374 614 9 Grassland

Aachen 50.799 6.025 232 865 10.3 Crop

Table 1 
CRNS Sites Used in This Study, Including Key Site Characteristics
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into account the uncertainty of model forcings (including precipitation, incoming shortwave radiation, incoming 
longwave radiation, and air temperature), parameters (including saturated hydraulic conductivity and porosity), 
and initial conditions (from spin-up).

For each ensemble member i at time step t, the soil moisture state vector xi,t is updated by the model prediction. 
The forecast step is given by:

𝐱𝐱𝑡𝑡𝑡𝑡𝑡 = 𝑓𝑓 (𝐱𝐱𝑡𝑡−1,𝑖𝑖, 𝐪𝐪𝑡𝑡𝑡𝑡𝑡, 𝐩𝐩𝑡𝑡𝑡𝑡𝑡)� (1)

where i is the ensemble member, xt, i is the model forecast state vector at time step t, f is the model TSMP, xt−1, i 
is the earlier model analysis state vector at time step t−1, qt, i is the vector with (perturbed) model forcings 
and pt, i denotes the model perturbation vector with parameters. Model forecasts are updated according  to:

𝐱𝐱
𝑎𝑎
𝑡𝑡𝑡𝑡𝑡 = 𝐱𝐱

𝑓𝑓

𝑡𝑡𝑡𝑡𝑡
+𝐊𝐊𝑡𝑡

(

𝐲𝐲𝑡𝑡𝑡𝑡𝑡 −𝐇𝐇𝑡𝑡𝐱𝐱
𝑓𝑓

𝑡𝑡𝑡𝑡𝑡

)

� (2)

where yt, i is the vector with (perturbed) observations, and the superscripts a and f refer to the updated state vector 
(the analysis) and the model predicted state vector, respectively. The observation operator Ht is used to map 
model forecasts into the observation space, which is assumed to be linear, and Kt denotes the Kalman gain that 
is calculated as:

𝐊𝐊𝑡𝑡 = 𝐏𝐏𝑡𝑡𝐇𝐇
𝑇𝑇
𝑡𝑡

(

𝐇𝐇𝑡𝑡𝐏𝐏𝑡𝑡𝐇𝐇
𝑇𝑇
𝑡𝑡 + 𝐑𝐑𝑡𝑡

)−1� (3)

where Pt is the model covariance matrix, which is calculated from the forecasted ensemble of model simulations 
at time step t according to:

𝐏𝐏𝑡𝑡 =

𝑁𝑁
∑

𝑖𝑖=1

(

𝐱𝐱
𝑓𝑓

𝑡𝑡𝑡𝑡𝑡
− 𝐱𝐱

𝑓𝑓
)(

𝐱𝐱
𝑓𝑓

𝑡𝑡𝑡𝑡𝑡
− 𝐱𝐱

𝑓𝑓
)𝑇𝑇

𝑁𝑁 − 1

� (4)

where 𝐴𝐴 𝐱𝐱
𝑓𝑓 is a vector with ensemble mean values for the model states at time step t. Rt is the measurement error 

covariance matrix, which is defined based on the expected measurement error of the CRNS soil moisture data 
(0.03 cm 3/cm 3). N is the number of ensemble members.

The updated states are then finally given by:

𝐱𝐱
𝑎𝑎
𝑡𝑡𝑡𝑡𝑡 = 𝐱𝐱

𝑓𝑓

𝑡𝑡𝑡𝑡𝑡
+ 𝐏𝐏𝑡𝑡𝐇𝐇

𝑇𝑇
𝑡𝑡

(

𝐇𝐇𝑡𝑡𝐏𝐏𝑡𝑡𝐇𝐇
𝑇𝑇
𝑡𝑡 + 𝐑𝐑𝑡𝑡

)−1(

𝐲𝐲𝑡𝑡𝑡𝑡𝑡 −𝐇𝐇𝑡𝑡𝐱𝐱
𝑓𝑓

𝑡𝑡𝑡𝑡𝑡

)

� (5)

In this work, the EnKF is also used to update the most sensitive parameter (saturated hydraulic conductivities) 
in ParFlow. The other parameters were not updated because Brandhorst & Neuweiler, 2023 found that updating 
multiple parameters for the unsaturated zone is prone to causing numerical instabilities, even in synthetic studies. 
The augmented state vector for updating both states and parameters is then extended and defined as follows:

𝐱𝐱
𝑓𝑓

𝑡𝑡𝑡𝑡𝑡
=

⎛

⎜

⎜

⎝

𝜓𝜓𝑡𝑡𝑡𝑡𝑡

𝐘𝐘𝑡𝑡𝑡𝑡𝑡

⎞

⎟

⎟

⎠

� (6)

where x is the augmented state vector, including pressure heads (ψ) (m) and the logarithm of hydraulic conduc-
tivities (Y = log10Ks (m/s)).

A damping factor (α) is used when both states and parameters are updated, so as to reduce filter inbreeding 
(Hendricks Franssen & Kinzelbach, 2008; Hung et al., 2022). Filter inbreeding refers to the underestimation of 
the ensemble variance that occurs after the EnKF analysis is applied repeatedly, which happens when the ensem-
ble size is small (Hendricks Franssen & Kinzelbach, 2008). The damping factor could reduce the modification 
of the forecast with the Kalman gain and limit the intensity of the perturbation of the parameter (log10Ks) (Gebler 
et al., 2019). This results in the following updating equation for the joint state-parameter estimation:

𝐱𝐱
𝑎𝑎
𝑡𝑡𝑡𝑡𝑡 = 𝐱𝐱

𝑓𝑓

𝑡𝑡𝑡𝑡𝑡
+ 𝛼𝛼𝑇𝑇

𝐏𝐏𝑡𝑡𝐇𝐇
𝑇𝑇
𝑡𝑡

(

𝐇𝐇𝑡𝑡𝐏𝐏𝑡𝑡𝐇𝐇
𝑇𝑇
𝑡𝑡 + 𝐑𝐑𝑡𝑡

)−1(

𝐲𝐲𝑡𝑡𝑡𝑡𝑡 −𝐇𝐇𝑡𝑡𝐱𝐱
𝑓𝑓

𝑡𝑡𝑡𝑡𝑡

)

� (7)
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where α T is a vector with damping factors, of which 1 is for updating states and values between 0 and 1 are for 
updating parameters.

The data assimilation updates states (and possibly also parameters) at all grid cells via the calculated model 
covariances, which give the covariances between all grid cells. Thus, during the analysis step, the states or 
parameters of the unassimilated locations are also updated, and the update is influenced by the correlation with 
the states or parameters of the assimilated locations.

3.  Model and Experiment Setup
3.1.  TSMP-PDAF Setup

The operation mode of TSMP-PDAF, when applied with the assimilation of CRNS soil moisture, is schematically 
illustrated in Figure 4. Before assimilation, the measurement depth needs to be determined. In order to determine 
a reasonable penetration depth for the CRNS observations for the corresponding model grid (500m), a mean 
value for three distances to the CRNS station (2, 25, and 85 m) was calculated based on the revised method of 
Schrön et al. (2017). This calculation is necessary because the penetration depth depends on the distance to the 
CRNS station. And then the CRNS soil moisture observation is specified by PDAF for the soil layers until the 
measurement depth.

The states and parameters of each TSMP realization run are collected by PDAF after a predefined assimilation 
interval (Gebler et al., 2019). By assimilating soil moisture observations, either model states or both model states 
and parameters are updated and passed back to the TSMP realizations, and then the updated states and param-
eters are used in the next prediction step, which is subsequently used in the next analysis, and so on. After the 
update has been made, the average weighted soil moisture from the simulations is compared with the observed 
soil moisture from CRNS.

We took the soil layers above 80 cm into account when calculating the weights to be assigned to the different 
soil layers for their contribution to the CRNS measurement signal. We calculated the weights for 1 mm thick soil 
layers and integrated the values to calculate the normalized weights for each model soil layer. Readers are referred 
to Schrön et al. (2017) for a more detailed description of weighting calculations.

3.2.  Ensemble Generation

The soil moisture DA experiments employ the EnKF with a total of 128 ensemble members. Each ensemble 
member was perturbed, with perturbations for meteorological forcings (precipitation, incoming shortwave radia-
tion, longwave radiation, and air temperature), hydraulic conductivity, and porosity to account for uncertainties. 
The perturbed values were drawn from a multivariate normal distribution, considering the temporal correlation 
of the four meteorological variables, which were induced by a first-order autoregressive model (Han et al., 2015; 

Figure 4.  Schematic overview of the assimilation of soil water content from CRNS with PDAF into TSMP (CLM-ParFlow). 
The flows represented by the red dashed line are outside TSMP-PDAF, including the weighting calculation and the 
comparison of CRNS soil moisture with the simulations.

 19447973, 2024, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
035056 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [08/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

LI ET AL.

10.1029/2023WR035056

8 of 33

Reichle et al., 2010). Table 2 summarizes the atmospheric forcing perturbations. The temporal correlations and 
standard deviations of the perturbations were assigned on the basis of earlier catchment-scale and regional-scale 
DA studies (R. Baatz et  al.,  2017; Han et  al.,  2013, 2015; Reichle et  al.,  2010). To ensure mass and energy 
balance, the perturbed precipitation and shortwave radiation are multiplied by the corrected lognormally distrib-
uted noises (Han et al., 2013; Yamamoto, 2007).

The vertical profile of the model has a vertical extension of 100 m and is discretized into 25 layers with varying 
thicknesses. The upper 10 layers extend to 3 m, which coincides with the CLM soil layers, and the lower layers 
are treated as bedrock layers. The Ks and porosity of the soil and bedrock layers were perturbed separately.

For the soil layers, soil texture (sand and clay contents) was perturbed by geostatistical simulation. A spherical 
variogram model was adopted to generate a spatially correlated random field with zero mean, variance 50% 2 
and correlation length of 12.5 km, and the generated perturbation field was added to the original soil texture as 
derived from the soil map. The sand and clay contents were perturbed separately. The percentages for sand  and 
clay were limited to a range between 0% and 100% to prevent unphysical values for soil texture. The final silt 
contents were calculated from the perturbed sand and clay contents. Subsequently, the Rosetta pedotransfer func-
tions (Schaap et al., 2001; Zhang & Schaap, 2017) were employed to calculate the perturbed Ks and porosity 
based on the perturbed soil texture.

For the bedrock layers, the original Ks values are from the hydrogeological map (Figure 3). For each ensemble 
member, the log10Ks of all the bedrock layers were perturbed by additive random values (same values for each 
ensemble member) from a univariate uniform distribution with values between −0.5 and 0.5. The porosity for the 
lower bedrock layers was set to a constant value of 0.15.

3.3.  Setup of the DA Experiments

After generating the ensemble, spin-up simulations for the ensemble members were performed in order to achieve 
a dynamic groundwater equilibrium. The multi-year average water table depth derived by Bogena et al. (2005) 
was used as the initial condition, and the 30-year average recharge values (derived from gridded German Meteor-
ological Service data on precipitation and actual evapotranspiration) were used as the upper boundary condition 
for the ParFlow model. The spin-up simulations for ParFlow were conducted for 100 years. Next, the final condi-
tions from ParFlow's spin-up were used to continue the spin-up for TSMP, including both CLM and ParFlow. This 
was done for a period of 5 years, using atmospheric forcings from the year 2015 (for the DA experiments in the 
wet year 2016) or the year 2017 (for the DA experiments in the dry year 2018) as input.

The CRNS soil moisture data were assimilated into the model TSMP by PDAF. In the DA experiments, the states 
were updated daily by DA, and saturated hydraulic conductivity was updated every 3 days. Those are the optimal 
updating frequencies found after conducting different assimilation experiments. When jointly updating states and 
parameters, a damping factor of 0.1 was employed to limit the intensity of the hydraulic conductivity perturba-
tion (Hung et al., 2022) and reduce the possibility of filter inbreeding (Hendricks Franssen & Kinzelbach, 2008). 
The river grid cells were masked during assimilation analysis to avoid instabilities. The year 2017 is used as an 
independent evaluation period for the DA experiments of 2016 and 2018. For the year 2017, the ensemble model 
ran with the updated parameters from 2016 to 2018, but without assimilation.

In addition to the DA experiments, jackknife simulations were also carried out to assess the effect of the CRNS 
assimilation on soil moisture simulation at unassimilated locations in the model domain. When performing a 

Variables Noise Standard deviation Time correlation scale Cross correlation

Precipitation Multiplicative 0.3 24 hr [1.0, −0.8, 0.5, 0.0

Shortwave radiation Multiplicative 0.2 24 hr −0.8, 1.0, −0.5, 0.4

Longwave radiation Additive 20 W m −2 24 hr 0.5, −0.5, 1.0, 0.4,

Air temperature Additive 1 K 24 hr 0.0, 0.4, 0.4, 1.0]

Table 2 
The Listed Cross-Correlations Give the Cross-Correlations Between the Perturbations for the Different Atmospheric 
Variables, Following the Order as Indicated in the Left Column of the Table
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jackknife simulation, 11 sites were used for assimilation (jointly updating 
states and parameters with a damping factor of 0.1), and the remaining one 
site was used for evaluation, so there were 12 jackknife experiments for each 
assimilation year (2016 and 2018). Table 3 lists all the experiments conducted.

3.4.  Evaluation of Model Performance

The simulated soil moisture results were evaluated with the following statisti-
cal metrics: bias (BIAS), mean absolute error (MAE), correlation coefficient 
(R), RMSE, and unbiased root mean square difference (ubRMSD):

BIAS =

𝑛𝑛
∑

𝑡𝑡=1

(

SM
sim

𝑡𝑡 − SM
obs

𝑡𝑡

)

� (8)
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𝑛𝑛
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(

|

|

|
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|

|

|

)

𝑛𝑛
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RMSE =
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√

√

√
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))2

𝑛𝑛 − 1

� (12)

where n is the total number of time steps, 𝐴𝐴 SM
sim

𝑡𝑡  the simulated ensemble average soil moisture content at the time 
step t (either from an open loop (OL) or DA run), and 𝐴𝐴 SM

obs

𝑡𝑡  the observed soil moisture by CRNS at the time step 
t. The overbar in Equations 10, 12, and 13 indicates the temporal mean over the study period.

The above performance measures were also used to evaluate the effect of CRNS soil moisture assimilation on 
evapotranspiration and discharge characteristics simply by replacing soil moisture with evapotranspiration and 
discharge in the equations.

The Nash-Sutcliffe efficiency (NSE) index was also used to evaluate the simulations of discharge. The NSE was 
calculated according:

NSE = 1 −

𝑛𝑛
∑

𝑡𝑡=1

(

𝑄𝑄sim

𝑡𝑡
−𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠

)2

𝑛𝑛
∑

𝑡𝑡=1

(

𝑄𝑄obs

𝑡𝑡
−𝑄𝑄obs

)2
� (13)

where 𝐴𝐴 𝐴𝐴sim

𝑡𝑡
 is the simulated ensemble average discharge at the time step t (either from an open loop (OL) or DA 

run), and 𝐴𝐴 𝐴𝐴obs

𝑡𝑡
 is the observed discharge at the time step t. The NSE range is between -∞ and 1. The closer to 1, 

the more accurate the model is.

4.  Results
4.1.  Soil Moisture Data Assimilation General Results

Table 4 summarizes the performance in terms of error statistics for OL and different DA experiments (state 
updates alone and joint state-parameter updates) for 2016 and 2018. For all the DA experiments, both for the wet 
year 2016 and the dry year 2018, and both for state updating alone and joint state-parameter updating, BIAS, 

Year Experiment Update state Update parameter

2016 OL − −

State + −

Joint + +

Jackknife + +

2018 OL − −

State + −

Joint + +

Jackknife + +

2017 OL − −

Updated Ks from 2016 − −

Updated Ks from 2018 − −

Table 3 
List of Conducted Simulation Experiments: Open Loop (OL), Data 
Assimilation With State Update (State) or Joint State and Parameter 
Update (Joint), Jackknife Evaluation Runs (Jackknife), and Verification 
Experiments in 2017 Using the Updated Saturated Hydraulic Conductivity 
(Ks) From Joint Assimilation Experiments of 2016 and 2018 (Updated Ks 
From 2016 and Updated Ks From 2018)

 19447973, 2024, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
035056 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [08/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

LI ET AL.

10.1029/2023WR035056

10 of 33

MAE, RMSE, and ubRMSD were lower than for the open loop run, and R 
was higher than for the OL run, indicating that simulated soil moisture was 
closer to the measurements after assimilation. Joint state-parameter estima-
tion gave better results than state estimation alone, both in 2016 and 2018. 
The RMSE of soil moisture decreased by 42.9% (2016) and 36.2% (2018) for 
state updating only, while for joint state-parameter updates, decreases were 
59.7% (2016) and 52.2% (2018). The best assimilation results resulted in 
similar soil moisture RMSE values for 2016 and 2018, namely 0.031 and 
0.033 cm 3/cm 3, respectively. The DA results for two different years illustrate 
that the effect of CRNS assimilation at the assimilated locations is consistent.

Figures  A1 and  A2 show the temporal courses of CRNS measured soil 
moisture, and simulated soil moisture from OL and joint state-parameter 
estimation in 2016 and 2018 at all the CRNS locations. The figures clearly 
show  that simulated soil moisture for all CRNS sites is closer to measure-
ments after assimilation. The error statistics for all CRNS sites can be found 
in Tables A1 and A2. The RMSE is less than 0.035 cm 3/cm 3 for most sites 
(except Wüstebach in 2016, and Rollesbroich and Aachen in 2018), which is 
within the acceptable range.

For Wüstebach, the RMSE was 0.059  cm 3/cm 3 in 2016, which is still 
much larger than the measurement error. The scatter plot for Wüstebach 
in Figure A3 indicates that modeled soil moisture updates reach an upper 

plafond, which is defined by the maximum possible porosity in the model, which is determined by the soil texture 
and pedotransfer function. However, the remarkably high porosity of the forest soil is due to the very high content 
of organic material in the topsoil, so the real porosity of Wüstebach cannot be represented in the model by the 
soil texture alone (Strebel et al., 2022). Therefore, the upper porosity limit inhibits further improvement of soil 
moisture characterization. For Rollesbroich, the RMSE was 0.048 cm 3/cm 3 in 2018, and the poor performance 
is also limited by the porosity, as can be seen in the scatter plot (see Figure A4). As for Aachen, the RMSE was 
0.038 cm 3/cm 3 in 2018, and soil moisture simulation might have been negatively impacted by irrigation, which 
was not accounted for in the model (land use is crop and 2018 was a dry year).

To better understand the effect of the DA during different hydrological conditions, the RMSEs of the SM were 
also calculated over different seasons (see Appendix Table A5). For DA experiments (both 2016 and 2018), 
the seasonal SM simulations were obviously improved after assimilation, and joint state-parameter estimation 
resulted in better performance compared to state update alone. The reduction in RMSE showed small differences 
across the four seasons in both 2016 and 2018, all ranging from 50% to 60%, suggesting the robustness of DA 
performance at assimilation locations under different hydrological conditions.

Examples of soil moisture spatial distributions (vertically averaged) for the OL and joint state-parameter esti-
mation runs are shown in Figure 5. The simulated soil moisture for the whole catchment is corrected by data 
assimilation for both state updates alone and joint state and parameter updates. However, the difference between 
state assimilation and joint assimilation is small, indicating that parameter update influence is limited. For 2016, 
a comparison between simulated values from OL and measurements at the CRNS sites revealed that the OL 
simulation was too dry. Data assimilation corrected the simulations, and in some too dry parts of the catchment, 
such as grid cells near the river, soil water content increased by assimilation. On the contrary, in 2018, the OL 
overestimated soil moisture content, and the DA corrected soil moisture toward lower values.

4.2.  Jackknife Simulations

In order to investigate whether the limited CRNS stations could improve the simulated soil moisture at locations 
beyond the CRNS stations over the Rur catchment, 12 jackknife simulations were performed for each year (2016 
and 2018). The EnKF may enhance the spatial accuracy of the simulated soil moisture, given the spatial corre-
lation of atmospheric forcings, soil hydraulic parameters, and soil moisture. The overall error statistics of 12 
jackknife simulations for 2016 and 2018 are shown in Table 3. Overall, the jackknife runs reduced MAE, RMSE, 
and ubRMSD, and increased R compared to OL, demonstrating that the soil moisture simulation at verification 

Year Simulation
BIAS 

(cm 3/cm 3)

MAE 
(cm 3/
cm 3) R

RMSE 
(cm 3/
cm 3)

ubRMSD 
(cm 3/
cm 3)

2016 OL −0.051 0.062 0.795 0.077 0.058

State −0.024 0.034 0.918 0.044 0.037

Joint −0.004 0.023 0.942 0.031 0.031

Jackknife −0.012 0.036 0.879 0.046 0.045

2018 OL 0.005 0.054 0.739 0.069 0.069

State −0.008 0.032 0.895 0.044 0.043

Joint 0.001 0.024 0.944 0.033 0.033

Jackknife 0.008 0.046 0.816 0.058 0.058

Note. The indicators were averaged over all sites with CRNS soil moisture 
observations. Site-specific indicators are provided in Appendix Tables  A1 
to A4.

Table 4 
Error Statistics for Open Loop (OL), Data Assimilation With State Updates 
(State), Joint State-Parameter Updates (Joint), and Jackknife Simulations 
With Joint State-Parameter Updates (Jackknife) for the Assimilation Periods 
of 2016 and 2018
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locations also improved. On average, the RMSE of the 12 jackknife runs for 2016 was 0.046 cm 3/cm 3, which is 
much lower than the RMSE for the OL run (0.077 cm 3/cm 3) and only a bit higher than when only the state was 
updated. For the year 2018, the jackknife simulations resulted in a smaller RMSE reduction at the verification 
locations, with an average RMSE of 0.058 cm 3/cm 3 (0.069 cm 3/cm 3 for the OL run).

For jackknife runs, the seasonal SM simulations showed quite different performances (see Appendix Table A5), 
and the extent of RMSE reduction was positively correlated with the average measured SM; the higher the soil 
moisture content, the larger the RMSE reduction. Therefore, the best performance occurred during the winter, 
when soil moisture was at its maximum for the whole year (47.7% and 34.3% RMSE reduction for 2016 and 2018, 
respectively). The worst performance was found for dry soil water conditions, for example, 32.3% RMSE reduc-
tion in autumn 2016. In 2018, the extreme dry conditions in the summer even led the RMSE to increase by 8.8%.

For each CRNS site, the jackknife simulation performed differently in 2016 and 2018 (see Figures A5 and A6). 
More detailed site statistics can be found in Tables A3 and A4. For 2016, all jackknife simulations resulted in an 
improved RMSE at the verification locations compared to the OL run. Assimilation could reduce RMSE by 70% 
at sites with a high RMSE in the OL run, such as Aachen (see Figure 6). In 2018, the RMSE for Aachen decreased 
by 36%, but RMSE reductions were smaller at other sites (for Gevenich, Heinsberg, and Schönseiffen, the RMSE 
even increased after assimilation). For Heinsberg, the RMSE for the DA-run in 2018 is higher (0.057 cm 3/cm 3) 
than for the OL-run (0.044 cm 3/cm 3), while the RMSE value decreased by 35% in 2016 (see Figure 6). Figure A7 
shows the spatial correlation of soil moisture from OL between the CRNS locations (Gevenich, Heinsberg, and 
Schönseiffen) and other grid cells in the catchment on a specific day in the summer. The figure indicates that the 

Figure 5.  Examples of the simulated soil moisture distribution over the Rur catchment on the 22nd of July in 2016 and 2018. Subplots (a) and (d) are from the open 
loop, (b) and (e) are from data assimilation with state update, and (c) and (f) are from joint state-parameter update simulations.
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spatial correlation around the CRNS locations was weaker in 2018 (dry) compared to 2016 (wet), which resulted 
in less accurate jackknife simulations in 2018 compared to 2016.

4.3.  Temporal Evolution of Parameter Estimates and Parameter Verification

The temporal evolution of Ks estimates during the assimilation period (2016 and 2018) for the CRNS sites is 
shown in Figure 7. Once the assimilation began, the parameters varied considerably within short time intervals. 
For most sites, the updated Ks started to stabilize after about 100 days of assimilation. Compared to the initial 
input Ks, most sites showed a decreasing trend during assimilation, while only Rollesbroich in 2016 showed a 
slightly increasing trend. The changing values for Ks estimates for Merzenhausen, Gevenich, Ruraue, Heinsberg, 
Selhausen, and Kleinhau were remarkably consistent for the two distinct assimilation years.

The years 2016 and 2018 resulted in very similar parameter sites, with differences smaller than 0.10 log10 (m/s) 
units at the end of the assimilation period for more than half of the sites (Figure 7). Some sites like Gevenich 
and Kall showed only slight variations from the prior values, with Ks changes less than 0.20 log10 (m/s) units, 
while for Ruraue and Wüstebach Ks changed more than 0.45 log10 (m/s) units. Among all sites, Wildenrath has 
the largest absolute variation, with Ks varying more than 10 −5 m/s, while Kall showed very small variations, with 
absolute Ks changes less than 5*10 −7 m/s. Temporally unstable and inconsistent parameter estimates imply that 
there may be multiple or seasonal optimal parameter values, so the fluctuations in Ks may be related to variations 
in atmospheric forcings. Some instability in the updated parameters could also be related to the compensation 
for other errors, for example, errors in the inputs (from atmospheric forcings or soil hydraulic parameters) and 
model structural errors.

Figure 8 depicts the prior and updated spatial ensemble mean of logKs at 2 cm depth (similar pattern for depths up 
to 80 cm), both for the years 2016 and 2018. Assimilation had a noticeable impact on Ks, particularly around the 
assimilated CRNS measurement locations, resulting in a decrease in its overall value. The logKs changes for the 

Figure 6.  Temporal evolution of simulated soil moisture from the open loop mean (OL, blue) and jackknife simulation mean 
(DA, green), together with the observed soil moisture from the CRNS (red), for 2016 (a), (b) and 2018 (c), (d) at the CRNS 
sites. Simulated soil moisture was vertically weighted using the revised method by Schrön et al. (2017).
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simulation year 2016 were more noticeable than for 2018. The reason for the larger logKs updates in 2016 could 
be that the simulated soil moisture content by the OL was lower than the observed values. 2018 was a particularly 
dry year, so the soil moisture condition in 2018 was closer to that of OL than in 2016, resulting in a larger update 
of the logKs in 2016 than in 2018. Grids with larger distances to the CRNS sites show smaller logKs updates 
because of the weak correlations with the soil moisture observations. Additionally, there are some grid cells with 
increased logKs after data assimilation, suggesting that horizontal water redistribution, for example, due to lateral 
groundwater flow or surface runoff, resulted in different logKs changes than at the CRNS sites.

Figure 7.  Estimates of averaged saturated hydraulic conductivity (log10Ks) from data assimilation experiments with joint state-parameter updating during the periods of 
2016 and 2018 at CRNS locations. The input value of Ks is indicated at the first time step.

Figure 8.  Ensemble averaged log10Ks fields of the soil at 2 cm depth: (a) prior field; (b) DA with joint state-parameter 
updates at the end of 2016; (c) DA with joint state-parameter updates at the end of 2018. The black asterisk is the location of 
the CRNS sites.
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Simulations were made for the verification year 2017, using as input updated 
hydraulic parameters from either 2016 or 2018. For the verification year, 
reduced BIAS, MAE, RMSE, and ubRMSD, and a small increase in R 
compared to OL were found (see Table 5). Using the updated Ks from the 
2016 simulation as input to the simulation for the year 2017 gave simulated 
soil moisture contents that were closer to observations than when the updated 
Ks from the 2018 simulation were used as input. The updated parameter's 
verification for the year 2018 was less successful than for the year 2016, 
which may be due to the hydrological conditions during 2016 (average CRNS 
soil moisture 0.31 cm 3/cm 3) being more similar to 2017 (0.29 cm 3/cm 3), as 
2018 (0.26 cm 3/cm 3) was a dry year.

4.4.  Evapotranspiration and Discharge

The effect of soil moisture DA on ET modeling was also investigated. We 
used observed ET data from three EC stations for comparison with simulated 

values in order to examine the impact of CRNS soil moisture assimilation on ET simulations. Results of the DA 
experiments showed that soil moisture states were significantly altered, and ET was also somewhat impacted 
by the different assimilation scenarios, depending on the simulation year (see Table A6). Moreover, the joint 
state-parameter assimilation resulted in a better ET prediction than soil moisture state updating alone.

The statistical performance measures BIAS, MAE, R, RMSE, and ubRMSD, comparing simulated ET (by 
OL and joint state-parameter updates) and EC data, are provided in Table 6. These statistical measures were 
computed on a monthly basis, as the parameter LAI in the CLM model is provided on a monthly scale. The joint 
state-parameter updates with CRNS soil moisture assimilation showed lower BIAS, MAE, and RMSE values 
than OL, except for Rollesbroich in 2018, demonstrating that ET simulation improved if soil moisture simulation 
was improved by data assimilation. However, the relative improvement in the characterization of ET is far smaller 
than for soil moisture. The high correlation coefficients (larger than 0.95) for Rollesbroich and Wüstebach, either 
for OL or DA, indicate a good fit between simulated and measured ET, mainly because of the reproduction of 
the yearly cycle. For Selhausen, the correlation is lower (less than 0.85), which might be related to different 
crops being cultivated for the years 2016 and 2018 (winter barley in 2016 and winter wheat in 2018). CLM uses 
the same parameters for these crops, and for example, the harvest date is not well represented by the model. 
For Rollesbroich, the ET simulation in 2018 was worse after DA (compared to OL) because the overestimated 
soil moisture in the OL run was corrected toward lower values, reducing ET, which further exacerbated the ET 
underestimation.

Simulation

BIAS 
(cm 3/
cm 3)

MAE 
(cm 3/
cm 3) R

RMSE 
(cm 3/
cm 3)

ubRMSD 
(cm 3/
cm 3)

OL −0.019 0.051 0.733 0.066 0.063

Updated Ks from 2016 −0.007 0.047 0.769 0.060 0.059

Updated Ks from 2018 −0.012 0.049 0.760 0.061 0.060

Note. The updated parameters used for verification were from the assimilation 
period (2016 and 2018). The error statistics were averaged over all CRNS 
sites.

Table 5 
Comparison of Measured and Simulated Soil Moisture for the Year 2017 
(Evaluation Period, No Assimilation)

Year Site

BIAS (mm/month) MAE (mm/month) R
RMSE (mm/

month)
ubRMSD (mm/

month)

OL DA OL DA OL DA OL DA OL DA

2016 Rollesbroich −10.17 −8.02 10.31 8.75 0.98 0.97 12.97 10.79 8.05 7.22

Wüstebach −17.93 −16.05 17.93 16.36 0.99 0.99 21.48 19.41 11.82 10.91

Selhausen −14.11 −7.27 15.77 12.37 0.87 0.85 18.53 14.63 12.02 12.69

2018 Rollesbroich −12.77 −14.26 13.68 15.22 0.97 0.97 18.05 19.86 12.76 13.83

Wüstebach −11.46 −10.50 13.36 12.33 0.96 0.95 17.24 16.25 12.88 12.40

Selhausen −8.14 −3.87 16.33 14.02 0.80 0.81 20.66 18.73 18.99 18.32

BIAS (m 3/s) MAE (m 3/s) R RMSE (m 3/s) NSE

Year Site OL DA OL DA OL DA OL DA OL DA

2016 Erkensruhr-Einruhr −0.23 −0.23 0.32 0.31 0.85 0.86 0.48 0.46 0.62 0.64

2018 Erkensruhr-Einruhr −0.15 −0.16 0.27 0.27 0.90 0.86 0.41 0.41 0.67 0.69

Table 6 
Comparison of Measured and Simulated Evapotranspiration (Monthly) and Discharge (Monthly) From Open Loop (OL) 
and Data Assimilation Runs With Joint State-Parameter Updates (DA) for Two Assimilation Periods (2016 and 2018)
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Figure 9 shows the monthly temporal ET variations for the OL run and the joint state-parameter experiment, 
compared to the EC data. The simulated ET tends to be closer to the observed values after soil moisture assimi-
lation, and the larger changes in ET simulation are observed during drier conditions, specifically in the summer, 
which is consistent with the results by Hung et al. (2022). For example, for Rollesbroich (2016) and Wüstebach 
(2018), the largest reductions in RMSE for ET occur in the summer, with 11.5% and 5.4%, respectively. However, 
for Wüstebach (2016), RMSE decreased most in the autumn, with 9.5%. For Selhausen, the largest RMSE reduc-
tion in ET occurred in the spring, for both 2016 and 2018, with reductions of 27.8% and 22.2%, respectively. In 
the winter, ET simulations hardly improved for Rollesbroich and Wüstebach. ET is limited by available energy 
under conditions of high SM, so SM changes have a minimal impact on ET. Therefore, the overall ET improve-
ment for the entire year is limited.

The annual ET for 2016 and 2018 across the whole Rur catchment for OL and joint state-parameter updating are 
presented in Figure 10. Since the ET changes were minimal in the assimilation experiments, only results for joint 
state-parameter updating are shown. For the OL simulation, the ET in 2018 was greater than in 2016, mainly 
due to the significantly higher temperature and higher incoming shortwave radiation in 2018, and in spite of the 
drier conditions. Data assimilation did not much affect simulated ET in the southern part of the catchment, where 
ET was generally energy limited. In contrast, simulated ET in the northern part of the catchment with generally 

Figure 9.  Temporal evolution of simulated evapotranspiration from open loop (OL, blue), data assimilation (joint state-parameter updates, DA, green), and the 
observed evapotranspiration (red) at the sites Rollesbroich, Wüstebach, and Selhausen for the assimilation periods of 2016 (first row) and 2018 (second row). Monthly 
Leaf Area Index for the plant functional types at the sites Rollesbroich (grassland), Wüstebach (needle leaf forest), and Selhausen (cropland), as well as the available 
daily LAI measurements from 2016 to 2018 (third row).
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less precipitation was affected by DA, with ET increases of more than 50 mm yr −1 for many grid cells in 2016, 
whereas ET was modified less by DA in 2018. This is related to the larger update of soil hydraulic parameters in 
2016 compared to 2018.

Figure 11 compares the simulated river discharge from the OL and DA experiments to the discharge from the in 
situ station Erkensruhr-Einruhr (indicated in Figure 1). This sub-catchment was hardly affected by water manage-
ment operations, so it was selected. For comparison purposes, the SM data of the CRNS station in Wüstebach are 
also shown since it is located in the catchment area of the Erkensruhr-Einruhr station. For the sake of simplicity, 
only the results of the joint state-parameter update are shown, as the results for the other experiments are very 
similar. The coupled model performance for discharge simulation is satisfactory, as the NSEs of 2016 and 2018 
were 0.62 and 0.64, respectively. The simulated discharge could capture the daily variations, including discharge 
peaks (see Figure 11). DA only slightly improves monthly discharge estimation compared to the OL (see Table 6), 
with an increase in NSE of about 0.02 for both 2016 and 2018, even though SM in Wüstebach was significantly 
improved by DA.

Figure 10.  Annual evapotranspiration from open loop (a), (c) and DA runs (joint state-parameter updates) (b), (d) over the 
Rur catchment during the assimilation periods.
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4.5.  Discussion

This study demonstrated that the assimilation of CRNS soil moisture data is beneficial and improves the inte-
grated terrestrial system model simulations of soil moisture over a real catchment, both for a wet and dry year. 
In addition, the jackknife simulations demonstrate the potential of the CRNS network to improve modeled soil 
moisture at the catchment scale, but it performs differently in a wet and dry year. The improvement in the dry 
year is relatively small, due to the weaker spatial correlations in the dry year 2018, compared to the wet year 
2016. The same perturbation methods were used for the 2 years and the spatial correlation length utilized for soil 
hydraulic parameter perturbations ensured that each site used for validation was within the correlation length of 
the assimilated sites. However, the soil moisture spatial correlation fluctuated under various soil hydrological 
conditions and was shown to be weakened under drought conditions. As a result, the drought in the summer 
of 2018 led to the worst validation performance of the seasonal SM simulation. The overall results from the 
jackknife experiments also indicate that the RMSE is much less reduced at the verification locations than at the 
assimilation locations.

It is very likely that a denser CRNS network may improve soil moisture characterization, for example, related 
to better parameter estimates and compensate for variations in performance across years. To further investi-
gate how dense an optimal measurement network of CRNS should be, one possible approach could involve 
conducting a synthetic study that tests varying numbers and locations of CRNS stations based on the model 
results established in this study. In addition, some denser CRNS observation networks are gradually being 
established, such as the new Irish Soil Moisture Observation Network (ISMON) (Finkele et  al.,  2022) and 
some field campaigns in which a large number of CRNS were operated together to explore the potential of a 
dense stationary CRNS network to monitor spatio-temporal SM dynamics at the catchment scale. For instance, 
a dense network of 24 CRNS was established in an area of only 1 km 2 in the pre-alpine Rott headwater catch-
ment in southern Germany (Fersch et al., 2020) and a network of 15 CRNS covering an area of 0.39 km 2 in the 
Wüstebach headwater catchment in western Germany (Heistermann et al., 2022). In our study, we show the 
potential high-density CRNS networks have to correct for errors introduced by imperfect input data and spatial 
correlations, thus reducing the uncertainties in SM prediction. The establishment of the above-mentioned 
CRNS observation networks offers the opportunity to further investigate how the density of sensors influences 
SM assimilation.

Joint state-parameter estimating improved soil moisture simulations, especially at measurement locations, but 
much less at verification locations. Hydraulic conductivity was only modified slightly and locally during joint 
state-parameter updating, and as a result, soil moisture characterization only improved slightly. Better results 
could be achieved with a larger ensemble size. Here, data assimilation experiments were performed with 128 
ensemble members, but this ensemble size might still be too small. Hendricks Franssen and Kinzelbach (2008) 
suggested that 200–500 realizations are needed to achieve successful joint state-parameter estimation with 

Figure 11.  Temporal evolution of simulated discharge from the open loop mean (OL, blue circle) and joint state-parameter 
assimilation mean (DA, green circle), together with the observed discharge (black circle) for 2016 and 2018 at the 
Erkensruhr-Einruhr in situ station. The temporal evolution of simulated soil moisture from the open loop mean (OL, blue 
line) and joint state-parameter assimilation mean (DA, green line), together with the observations (red dot) for 2016 and 2018 
at the Wüstebach site.
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groundwater hydrological models. A larger ensemble size, however, was not feasible in this work, given the 
needed compute time for a run with the high-resolution integrated model.

DA reduced differences between simulated and measured soil moisture contents significantly, but the bene-
fit of DA was not clear for the modeling of ET, and the findings are in line with the synthetic study by 
Hung et al. (2022) with the TSMP-PDAF model. Similar findings were made by Ridler et al. (2014), who 
found that soil moisture assimilation had little influence on flux estimation. Uncertain parameters and model 
structural errors are also possible reasons for the limited improvement in ET simulations after soil moisture 
assimilation.

It is important to note that more studies have reported the underestimation of evapotranspiration (or latent heat 
flux) by CLM (Boas et al., 2021; Shrestha et al., 2014). The ET mismatch in our simulations was largely related 
to a systematic underestimation of ET (bias), which seems partly related to underestimated LAI values. The input 
LAI used in this study was taken from previous studies (Sulis et al., 2015, 2018), but was found to be smaller than 
the measured LAI values at EC sites (see Figure 9). Notice that the measured LAI is on a daily basis, while the 
LAI in the model is defined on a monthly basis, but the systematic underestimation of the LAI in the model can 
nevertheless be observed.

The performance of the ET simulation is also affected by the use of a uniform set of parameters for crops, neglect-
ing the fact that different crops in the region can have very different properties (e.g., LAI and stem area index). 
Sulis et al.  (2015) incorporated crop-specific parameters in CLM3.5 simulations, which resulted in improved 
simulations of land-atmosphere exchange fluxes compared to simulations using the generic crop type. Similarly, 
a more recent study by Boas et al. (2021) found that utilizing crop-specific parameters in the newer version 5.0 of 
CLM improved the representation of crop growth cycles and led to more accurate simulations of energy fluxes. 
The model CLM5 shows a better characterization of ET than CLM3.5 (Shrestha, Kurtz, et al., 2018), but it is not 
yet coupled to ParFlow, which is the reason why we did not use it in this work. In addition, other factors influence 
ET, like vegetation rooting depth and further vegetation characteristics (Li et al., 2020). The uncertainty of those 
parameters was not considered in this work, but in order to improve ET simulation in DA studies, their uncer-
tainty should be considered in the future. Finally, mismatches between modeled and measured ET are probably 
also related to errors in the input of atmospheric forcings like incident radiation. A fully coupled atmosphere-land 
surface-subsurface model integrated into the DA framework may further improve the characterization of ET.

Therefore, it can be concluded that assimilating only soil moisture is insufficient to significantly improve the 
simulation of ET and that parameter biases and model errors are more important for the ET simulation. Better 
results may be achieved by assimilating additional types of measurements, like LAI, and estimating further 
parameters, like vegetation parameters.

River discharge was used to investigate the effects of SM assimilation on lateral fluxes, with slight improvements 
in discharge estimates. Our finding is consistent with previous synthetic SM assimilation experiments at the 
hillslope or larger catchment scale using the integrated model TSMP (Gebler et al., 2019; Hung et al., 2022). 
The limited improvement in discharge characterization may be attributed to the limited spread of discharge and 
to the fact that only the soil hydraulic parameter Ks was updated without large changes in the parameter values. 
On the  other hand, the limited improvement might also be partly related to model structural errors (e.g., under-
representation of preferential flows and representation of drainage) (Gebler et al., 2019). Furthermore, Baroni 
et al. (2017) found that river discharge in large catchments is only sensitive to the perturbation of long spatial 
structures and is not affected by small-scale soil variabilities. Therefore, with only SM and parameter Ks being 
updated in the integrated model, an improvement in the performance of discharge estimation is challenging. 
Possible improvements could be achieved by considering the uncertainties in other parameters. For instance, D. 
Baatz et al. (2017) found that the estimated Manning's roughness coefficients could improve the discharge simu-
lation with TSMP in synthetic 2D experiments.

In this study, we did not directly assimilate the CRNS neutron intensity observations but used soil moisture 
products derived from the CRNS observations. Next, it is planned to assimilate neutron count intensity directly 
with the COSMIC operator (Shuttleworth et al., 2013). In addition, although we used a 500-m resolution, which 
is already fine relative to the remote sensing data, 500-m is still coarse compared to the footprint of CRNS data. 
Therefore, a higher resolution will be used in the future to include the calculation of the horizontal weighting of 
the CRNS observations.
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Our study demonstrates the potential of a CRNS observational network to enhance SM estimation as well as 
other hydrological variables (evapotranspiration and discharge) at a larger catchment scale, suggesting promising 
prospects for the application of CRNS compared to traditional SM sensors or RS data sets. The footprint of CRNS 
covers areas with a diameter of 300–600 m and a depth of 15–70 cm, which is much larger than the measurement 
volume of conventional SM measurement methods such as point-type soil moisture sensors. Remote sensing data 
can provide spatially continuous SM information, but typically only for the top soil (0–5 cm). Therefore, the SM 
data from CRNS better represent the scale of model grids and thus can provide more accurate parameters for 
hydrological models to simulate hydrological processes such as infiltration, evapotranspiration, and runoff. We 
have also shown that the assimilation of SM from CRNS can improve SM estimates in the vicinity as well as at 
distant locations from CRNS stations. This indicates that even a low number of CRNS can provide useful infor-
mation for data assimilation. For instance, Patil et al. (2021) demonstrated that assimilating SM from four CRNS 
improved SM simulation in a 655 km 2 catchment. This suggests that the use of CRNS instead of point sensors 
could reduce the number of measuring stations, which in turn may reduce installation and maintenance costs.

5.  Conclusions
Soil moisture measurements from 12 CRNS distributed over the Rur catchment (∼2,400 km 2) were assimilated 
into TSMP with EnKF. This is the first application of the assimilation of observed soil moisture data from CRNS 
into an integrated land surface-subsurface model for a real-world case. To this end, 128 ensemble members were 
generated by considering uncertain atmospheric forcings and subsurface hydraulic parameters. DA experiments 
were conducted for a wet year (2016) and a dry one (2018), with state-only updates and joint updates of state 
and parameters. Soil moisture observations from CRNS, evapotranspiration from eddy covariance stations, and 
discharge from an in situ station were used as validation data to assess the impact of soil moisture assimilation 
on soil moisture and flux simulation. EnKF assimilation of soil moisture from CRNS improves soil moisture 
estimation at measurement sites strongly in both dry and wet years, with up to 60% RMSE reductions. Joint 
state-parameter estimation results in a slightly better soil moisture simulation than state estimation alone, with 
an RMSE reduction of more than 15% compared to state estimation alone. Jackknife experiments show limited 
improvement in soil moisture characterization at independent verification locations, and the verification perfor-
mance is affected by hydrological conditions, showing worse performance in dry episodes, indicating that the 
measurement network (∼1 site per 200 km 2) is not dense enough. Soil moisture assimilation improved ET and 
discharge characterization to a much lesser degree than soil moisture, indicating limited sensitivities of ET and 
discharge toward soil moisture.

The DA experiments show that improving the characterization of states (spatially and temporally) in the inte-
grated surface-subsurface model TSMP by assimilating SM from a distributed CRNS network at the catchment 
scale is challenging but also promising. Compared to RS and traditional point SM measurements, CRNS could 
provide larger-scale in-situ SM data with high temporal resolution and deeper penetration depth. In combination 
with DA, a limited number of sensors makes it feasible to continuously and stably determine SM dynamics from 
the field to the catchment scale. Better SM information is important for improving our understanding of the 
processes in terrestrial water cycles and reducing the large uncertainties of hydrological fluxes during modeling. 
Large-scale networks of CRNS already exist in the USA, Europe, Australia and India, but the density of sensors 
is still not sufficient to completely represent soil moisture patterns at the continental scale. As sensors become 
more affordable, higher observational coverage will become possible, enabling the acquisition of long-term SM 
data sets to monitor climate change and support predictions.

To improve the characterization of the states and parameters of integrated land surface-subsurface simulation at 
large scales, in addition to assimilating soil moisture from a denser CRNS measurement network, future work 
should focus on multivariate assimilation (e.g., joint assimilation with vegetation related data) and the estimation 
of further soil hydraulic and vegetation parameters with integrated terrestrial system models at a higher spatial 
resolution.
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Appendix A

Site

BIAS (cm 3/cm 3) MAE (cm 3/cm 3) R RMSE (cm 3/cm 3) ubRMSD (cm 3/cm 3)

OL DA OL DA OL DA OL DA OL DA

Merzenhausen −0.036 0.001 0.041 0.022 0.870 0.902 0.048 0.029 0.032 0.028

Rollesbroich −0.010 −0.009 0.036 0.026 0.854 0.957 0.044 0.032 0.043 0.030

Gevenich −0.050 0.016 0.055 0.023 0.879 0.949 0.063 0.030 0.038 0.025

Ruraue −0.074 −0.019 0.075 0.025 0.779 0.936 0.084 0.030 0.041 0.023

Wildenrath −0.012 −0.003 0.024 0.015 0.856 0.902 0.030 0.021 0.028 0.021

Wüstebach −0.083 −0.033 0.084 0.042 0.731 0.797 0.097 0.059 0.051 0.049

Heinsberg −0.064 0.003 0.065 0.017 0.854 0.928 0.072 0.023 0.033 0.023

Kall 0.014 0.000 0.031 0.020 0.886 0.946 0.037 0.024 0.034 0.024

Selhausen −0.120 −0.011 0.121 0.026 0.852 0.906 0.127 0.035 0.040 0.033

Schönseiffen −0.050 0.008 0.057 0.022 0.843 0.930 0.067 0.027 0.045 0.025

Kleinau 0.002 −0.005 0.027 0.023 0.915 0.947 0.035 0.028 0.034 0.028

Aachen −0.126 −0.009 0.126 0.022 0.883 0.920 0.130 0.030 0.034 0.028

Table A1 
Comparison of CRNS Soil Moisture Measurements and Simulated Soil Moisture From Open Loop (OL) and Data 
Assimilation With Joint State and Parameter Updating (DA) for the Year 2016

Site

BIAS (cm 3/cm 3) MAE (cm 3/cm 3) R RMSE (cm 3/cm 3) ubRMSD (cm 3/cm 3)

OL DA OL DA OL DA OL DA OL DA

Merzenhausen 0.025 0.000 0.042 0.023 0.786 0.937 0.056 0.030 0.050 0.030

Rollesbroich 0.045 0.019 0.060 0.039 0.794 0.874 0.072 0.048 0.055 0.044

Gevenich 0.003 0.004 0.043 0.026 0.785 0.929 0.053 0.034 0.053 0.034

Ruraue −0.015 −0.015 0.056 0.024 0.711 0.957 0.066 0.030 0.064 0.026

Wildenrath 0.021 0.001 0.028 0.014 0.892 0.943 0.035 0.021 0.028 0.021

Wüstebach −0.017 −0.014 0.049 0.024 0.702 0.886 0.062 0.033 0.060 0.030

Heinsberg 0.007 0.005 0.037 0.017 0.833 0.959 0.044 0.024 0.044 0.024

Kall 0.072 0.014 0.073 0.024 0.812 0.926 0.086 0.034 0.047 0.031

Selhausen −0.031 0.006 0.051 0.025 0.780 0.939 0.064 0.031 0.056 0.031

Schönseiffen 0.015 0.007 0.036 0.023 0.908 0.950 0.045 0.028 0.043 0.028

Kleinau 0.061 0.005 0.062 0.025 0.875 0.953 0.076 0.032 0.046 0.032

Aachen −0.113 −0.018 0.115 0.028 0.810 0.917 0.123 0.038 0.049 0.033

Table A2 
Comparison of CRNS Soil Moisture Measurements and Simulated Soil Moisture From Open Loop (OL) and Data 
Assimilation With Joint State and Parameter Updating (DA) for the Year 2018

Site

BIAS (cm 3/cm 3) MAE (cm 3/cm 3) R RMSE (cm 3/cm 3) ubRMSD (cm 3/cm 3)

OL DA OL DA OL DA OL DA OL DA

Merzenhausen −0.036 −0.022 0.041 0.031 0.870 0.846 0.048 0.039 0.032 0.032

Rollesbroich −0.010 −0.017 0.036 0.030 0.854 0.912 0.044 0.038 0.043 0.034

Table A3 
Comparison of CRNS Soil Moisture Measurements and Simulated Soil Moisture From Open Loop (OL) and Jackknife 
Simulations (DA) for the Year 2016
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Site

BIAS (cm 3/cm 3) MAE (cm 3/cm 3) R RMSE (cm 3/cm 3) ubRMSD (cm 3/cm 3)

OL DA OL DA OL DA OL DA OL DA

Gevenich −0.050 −0.022 0.055 0.037 0.879 0.889 0.063 0.046 0.038 0.040

Ruraue −0.074 −0.039 0.075 0.042 0.779 0.936 0.084 0.047 0.041 0.026

Wildenrath −0.012 −0.015 0.024 0.023 0.856 0.891 0.030 0.029 0.028 0.025

Wüstebach −0.083 −0.076 0.084 0.076 0.731 0.859 0.097 0.085 0.051 0.039

Heinsberg −0.064 0.033 0.065 0.038 0.854 0.839 0.072 0.047 0.033 0.033

Kall 0.014 0.004 0.031 0.028 0.886 0.874 0.037 0.036 0.034 0.035

Selhausen −0.120 −0.015 0.121 0.039 0.852 0.832 0.127 0.050 0.040 0.047

Schönseiffen −0.050 0.033 0.057 0.040 0.843 0.901 0.067 0.047 0.045 0.033

Kleinau 0.002 −0.005 0.027 0.026 0.915 0.909 0.035 0.034 0.034 0.033

Aachen −0.126 −0.002 0.126 0.030 0.883 0.848 0.130 0.039 0.034 0.039

Table A3 
Continued

Site

BIAS (cm 3/cm 3) MAE (cm 3/cm 3) R RMSE (cm 3/cm 3) ubRMSD (cm 3/cm 3)

OL DA OL DA OL DA OL DA OL DA

Merzenhausen 0.025 0.041 0.042 0.043 0.786 0.904 0.056 0.054 0.050 0.035

Rollesbroich 0.045 0.019 0.060 0.040 0.794 0.873 0.072 0.048 0.055 0.044

Gevenich 0.003 0.019 0.043 0.052 0.785 0.773 0.053 0.063 0.053 0.060

Ruraue −0.015 −0.041 0.056 0.045 0.711 0.919 0.066 0.055 0.064 0.036

Wildenrath 0.021 0.007 0.028 0.027 0.892 0.835 0.035 0.034 0.028 0.034

Wüstebach −0.017 −0.044 0.049 0.048 0.702 0.853 0.062 0.058 0.060 0.038

Heinsberg 0.007 0.029 0.037 0.045 0.833 0.818 0.044 0.057 0.044 0.049

Kall 0.072 0.048 0.073 0.056 0.812 0.812 0.086 0.068 0.047 0.047

Selhausen −0.031 0.038 0.051 0.043 0.780 0.888 0.064 0.056 0.056 0.041

Schönseiffen 0.015 0.017 0.036 0.038 0.908 0.868 0.045 0.048 0.043 0.045

Kleinau 0.061 0.027 0.062 0.051 0.875 0.770 0.076 0.068 0.046 0.062

Aachen −0.113 −0.061 0.115 0.063 0.810 0.831 0.123 0.079 0.049 0.051

Table A4 
Comparison of CRNS Soil Moisture Measurements and Simulated Soil Moisture From Open Loop (OL) and Jackknife 
Simulations (DA) for the Year 2018
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CLM computes the evaporation and transpiration by taking into account both vegetated and non-vegetated 
surfaces (Oleson et al., 2007).

For the non-vegetated surface (bare soil), the evaporation Eg [M/L 2/T] from ground is calculated as:

𝐸𝐸𝑔𝑔 = −
𝜌𝜌atm

(

𝑞𝑞atm − 𝑞𝑞g
)

𝛾𝛾aw

� (A1)

Year Season Mean observed soil moisture (cm 3/cm 3)

RMSE (cm 3/cm 3)

OL State Joint Jackknife

2016 Spring 0.32 0.078 0.043 0.032 0.045

Summer 0.31 0.075 0.043 0.030 0.047

Autumn 0.25 0.070 0.039 0.030 0.048

Winter 0.36 0.087 0.052 0.035 0.045

2018 Spring 0.31 0.076 0.046 0.037 0.062

Summer 0.18 0.067 0.041 0.033 0.073

Autumn 0.22 0.066 0.047 0.029 0.046

Winter 0.33 0.065 0.042 0.031 0.043

Note. The seasonal indicator was averaged over all sites with CRNS soil moisture observations.

Table A5 
Root Mean Square Error (RMSE) for Open Loop (OL), Data Assimilation With State Updates (State), Joint 
State-Parameter Updates (Joint), and Jackknife Simulations With Joint State-Parameter Updates (Jackknife) for the 
Assimilation Periods of 2016 and 2018

Site Year Simulation BIAS (mm/day) MAE (mm/day) R RMSE (mm/day) ubRMSD (mm/day)

Rollesbroich 2016 OL −0.334 0.464 0.896 0.612 0.513

State −0.318 0.444 0.902 0.582 0.487

Joint −0.264 0.428 0.897 0.559 0.493

2018 OL −0.420 0.547 0.900 0.747 0.618

State −0.426 0.553 0.900 0.753 0.621

Joint −0.469 0.593 0.880 0.816 0.668

Wüstebach 2016 OL −0.590 0.707 0.821 0.914 0.698

State −0.553 0.675 0.826 0.876 0.679

Joint −0.528 0.663 0.824 0.860 0.679

2018 OL −0.377 0.619 0.773 0.849 0.760

State −0.377 0.610 0.769 0.844 0.755

Joint −0.345 0.601 0.775 0.825 0.750

Selhausen 2016 OL −0.464 0.643 0.724 0.843 0.704

State −0.278 0.585 0.719 0.768 0.716

Joint −0.239 0.568 0.723 0.753 0.714

2018 OL −0.268 0.629 0.710 0.871 0.829

State −0.183 0.612 0.713 0.842 0.822

Joint −0.127 0.585 0.731 0.811 0.801

Table A6 
Comparison of Daily Measured Evapotranspiration and Simulated Evapotranspiration From Open Loop (OL), Data 
Assimilation With State Updates (State), and Joint State-Parameter Updates (Joint) for Two Assimilation Periods (2016 
and 2018)
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where 𝜌atm [M/L 3] is air density, qatm [M/M] is the atmospheric specific humidity, qg [M/M] is the specific humid-
ity of the soil surface and 𝛾aw [T/L] is the aerodynamic resistance to water vapor transfer. qg is proportional to the 
saturation specific humidity:

𝑞𝑞g = 𝛼𝛼𝛼𝛼
𝑇𝑇g

sat
� (A2)

and 𝐴𝐴 𝐴𝐴
𝑇𝑇 g

sat
 [M/M] is the saturated specific humidity given the ground surface temperature Tg [Q]. The factor α [−] 

is a combined value of soil and snow:

𝛼𝛼 = 𝛼𝛼soi,1(1 − 𝑓𝑓sno) + 𝑓𝑓sno� (A3)

where fsno [−] is the fraction of snow coverage, αsoi,1 [−] refers to the surface soil layer and is a function of the 
surface soil layer water matrix potential ψ1 [L]:

𝛼𝛼soi,1 = exp

(

𝜓𝜓1𝑔𝑔

1 × 10
3
𝑅𝑅𝑤𝑤𝑤𝑤𝑇𝑇g

)

� (A4)

where Rwv [L 2/T 2/Q] is the gas constant for water vapor, 𝑔 [L/T 2] is the gravitational acceleration, ψ1 [L] is calcu-
lated as:

𝜓𝜓1 = 𝜓𝜓sat,1𝑠𝑠
−𝐵𝐵1

1
and𝜓𝜓1 ≥ −1 × 10

8� (A5)

where ψsat,1 [L] is saturated matric potential for the surface soil layer, B1 [−] is the Clapp and Hornberger param-
eter (Clapp & Hornberger, 1978), and s1 [−] is the wetness of the top soil layer with respect to saturation:

𝑠𝑠1 =
1

∆𝑧𝑧1𝜃𝜃sat,1

[

𝑤𝑤liq,1

𝜌𝜌liq

+
𝑤𝑤ice,1

𝜌𝜌ice

]

and 0.01 ≤ 𝑠𝑠1 ≤ 1.0� (A6)

where Δz1 [L] is the thickness of the top soil layer, 𝜃sat,1 [L 3/L 3] is saturated soil moisture of the top soil layer (i.e., 
porosity), wliq,1 [M/L 2] and wice,1 [M/L 2] are the mass of liquid water and ice of the top soil layer, 𝜌liq [M/L 3] and 
𝜌ice [M/L 3] are the density of liquid water and ice.

For the vegetated surface, the evapotranspiration flux 𝐸 [M/L 2/T] includes the water vapor flux from vegetation 
𝐸v and the ground 𝐸g:

𝐸𝐸 = 𝐸𝐸𝑣𝑣 + 𝐸𝐸g� (A7)

𝐸𝐸𝑣𝑣 = −

𝜌𝜌atm

(

𝑞𝑞𝑠𝑠 − 𝑞𝑞
𝑇𝑇𝑣𝑣
sat

)

𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

� (A8)

𝐸𝐸g = −
𝜌𝜌atm

(

𝑞𝑞𝑠𝑠 − 𝑞𝑞g
)

𝑟𝑟′𝑎𝑎𝑎𝑎
� (A9)

where 𝐴𝐴 𝐴𝐴
𝑇𝑇 g

sat
 [M/M] is the saturated specific humidity given the vegetation temperature Tv [Q], r′ aw [T/L] is the 

aerodynamic resistance to water vapor transfer between the ground and the canopy air, rtotal [T/L] is the aero-
dynamic resistance to water vapor transfer from the canopy to the canopy air. qs [M/M] is the canopy specific 
humidity:

𝑞𝑞𝑠𝑠 =
𝑐𝑐𝑤𝑤𝑎𝑎 𝑞𝑞atm + 𝑐𝑐𝑤𝑤g 𝑞𝑞g + 𝑐𝑐𝑤𝑤𝑣𝑣 𝑞𝑞

𝑇𝑇𝑣𝑣
sat

𝑐𝑐𝑤𝑤𝑎𝑎 + 𝑐𝑐𝑤𝑤g + 𝑐𝑐𝑤𝑤𝑣𝑣
� (A10)

where 𝐴𝐴 𝐴𝐴w

a  [L/T], 𝐴𝐴 𝐴𝐴w

g  [L/T] and 𝐴𝐴 𝐴𝐴w

v  [L/T] are water vapor conductances from the canopy air to the atmosphere, the 
leaf to canopy air, and ground to canopy air, respectively.
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Figure A1.  Temporal evolution of mean simulated soil moisture from the open loop (OL, blue), joint state-parameter estimation (DA, green), together with observed 
soil moisture from CRNS (red), for the year 2016 at the CRNS sites. Simulated soil moisture was vertically weighted using the revised method.
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Figure A2.  Temporal evolution of mean simulated soil moisture from the open loop (OL, blue), joint state-parameter estimation (DA, green), together with observed 
soil moisture from CRNS (red), for the year 2018 at the CRNS sites. Simulated soil moisture was vertically weighted using the revised method.
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Figure A3.  Soil moisture scatter plots for CRNS observations versus ensemble mean soil moisture from the open loop run (OL, blue) and ensemble mean soil moisture 
from joint state-parameter estimation (DA, red) for 2016.
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Figure A4.  Soil moisture scatter plots for CRNS observations versus ensemble mean soil moisture from the open loop run (OL, blue) and ensemble mean soil moisture 
from joint state-parameter estimation (DA, red) for 2018.
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Figure A5.  Temporal evolution of mean simulated soil moisture from the open loop run (OL, blue), jackknife simulations (DA, green), together with the observed soil 
moisture from CRNS (red) for the year 2016 at the CRNS sites. Simulated soil moisture was vertically weighted using the revised method.
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Figure A6.  Temporal evolution of mean simulated soil moisture from the open loop run (OL, blue), jackknife simulations (DA, green), together with the observed soil 
moisture from CRNS (red) for the year 2018 at the CRNS sites. Simulated soil moisture was vertically weighted using the revised method.
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Data Availability Statement
The atmospheric reanalysis data set COSMO-REA6 (Bollmeyer et al., 2015; Wahl et al., 2017) was downloaded 
from (https://reanalysis.meteo.uni-bonn.de/?COSMO-REA6; last access: 17 August 2023). The soil map BK50 
(Geologischer Dienst Nordrhein-Westfalen,  2009) was downloaded from (https://www.opengeodata.nrw.de/
produkte/geologie/boden/BK/ISBK50/; last access: 17 August 2023), and the European Soil Database (ESDB) 
(Pano, 2006) was available at (https://esdac.jrc.ec.europa.eu/content/european-soil-database-v20-vector-and-at-
tribute-data; last access: 17 August 2023). The aquifer permeability map can be found at (https://www.openge-
odata.nrw.de/produkte/geologie/geologie/HK/ISHK100/; last access: 17 August 2023), processed to 100 m by 
Herrmann et al. (2015). The eddy covariance and discharge data were obtained from TERENO at (https://www.
tereno.net/; last access: 17 August 2023). The CRNS soil moisture data were retrieved from the “Data set of 
COSMOS-Europe: A European network of Cosmic-Ray Neutron Soil Moisture Sensors” (Bogena et al., 2022), 
at [https://doi.org/10.34731/x9s3-kr48; last access: 17 August 2023]). The remote repository of TSMP is located 
on Github at (https://github.com/HPSCTerrSys/TSMP; last access: 17 August 2023). PDAF version 1.13.2 can 
be downloaded at (http://pdaf.awi.de/trac/wiki; last access: 17 August 2023) after registration. Figures were made 
with Matplotlib version 3.5.2 (Hunter, 2007), available under the Matplotlib license at (https://matplotlib.org/; 
last access: 17 August 2023).

Figure A7.  Examples of the spatial correlations of soil moisture between CRNS sites and other grid cells over the Rur catchment, for the open loop run. Subplots (a) 
and (d) are from Gevenich on the 29th of June in 2016 and 2018, (b) and (e) are from Heinsberg on the second of August in 2016 and 2018, and (c) and (f) are from 
Schönseiffen on the 28th of July in 2016 and 2018. The black asterisk is the location of the CRNS sites.
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