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A B S T R A C T   

The complexity of the spatial distribution and temporal occurrence of preferential flow (PF) makes it challenging 
to understand the mechanisms of PF. This study aims to identify the spatial and temporal patterns of PF 
occurrence using machine learning (Classification and Regression Trees and Random Forests) in the Qilian 
Mountains, Northwest China. Our results show that detected PF events transport much more rainfall down to the 
subsoil than non-PF events. Different vegetation types exhibit variations in the main soil layers where PF occurs, 
which is closely related to the distribution of roots. The PF proportion varies significantly both vertically and 
horizontally. Based on the Random Forests, we found that the spatial distribution of the PF proportion is mainly 
controlled by the saturated hydraulic conductivity and residual soil moisture, which cannot be identified by 
conventional correlation analysis methods. With these soil properties, the spatial distribution of the PF pro
portion can be estimated with reasonable performance. Using the Classification and Regression Trees method, we 
identified the temporal occurrence pattern of the PF for different vegetation types and all observation stations. 
Results indicate that the dominant factors controlling the temporal occurrence of the PF varied for different 
vegetation types. The thresholds at which these factors initiate the PF also varied. Finally, we found that the PF 
occurs particularly under wet conditions (except for hydrophobic soils), under denser vegetation, and under 
conditions of high rainfall amount and intensity, regardless of vegetation type. Our study confirms that both site 
factors (e.g., soil properties and vegetation) and temporal factors (e.g., initial soil moisture and rainfall char
acteristics) control the occurrence of the PF in mountainous regions such as the Qilian Mountains and that the 
Classification and Regression Trees has great potential to study the temporal occurrence of the PF.   

1. Introduction 

Preferential flow (PF) refers to the phenomenon whereby a fluid 
bypasses most of the matrix and chooses a preferred path to pass through 
a porous medium at a faster rate (Flury et al., 1994; Lin, 2010; Guo and 
Lin, 2018). Due to its relatively fast transport rate (relative to piston 
flow), it has an important effect on the distribution of water in the soil 
(Ritsema and Dekker, 1994), root uptake (Schwärzel et al., 2009), and 
groundwater recharge (Ireson and Butler, 2011). Especially in arid and 
semi-arid areas, where precipitation is scarce and potential evapo
transpiration is intense (Cao et al., 2011), the growth of vegetation is 

highly dependent on deep soil moisture and groundwater (Loheide and 
Booth, 2011; Orellana et al., 2012; Yang et al., 2022). And the PF helps 
to transfer more water to deeper soils (Gazis and Feng, 2004), which is 
used for groundwater recharge and vegetation consumption. Despite the 
increasing attention and research on this topic, its complex mechanisms 
hinder further progress in understanding and modeling the PF (Guo and 
Lin, 2018). 

Previous studies have shown that the occurrence of PF is controlled 
by temporal and spatial factors (Guo and Lin, 2018). The spatial factors 
controlling the occurrence of PF mainly include soil properties, topog
raphy, and vegetation (Guo and Lin, 2018; Demand et al., 2019; Tang 

* Corresponding author at: NO. 222 Tianshui Road (South), Chengguan District, Lanzhou Gansu 730000, China. 
E-mail address: tianjie@lzu.edu.cn (J. Tian).  

Contents lists available at ScienceDirect 

Geoderma 

journal homepage: www.elsevier.com/locate/geoderma 

https://doi.org/10.1016/j.geoderma.2023.116626 
Received 28 February 2023; Received in revised form 28 July 2023; Accepted 30 July 2023   

mailto:tianjie@lzu.edu.cn
www.sciencedirect.com/science/journal/00167061
https://www.elsevier.com/locate/geoderma
https://doi.org/10.1016/j.geoderma.2023.116626
https://doi.org/10.1016/j.geoderma.2023.116626
https://doi.org/10.1016/j.geoderma.2023.116626
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


Geoderma 438 (2023) 116626

2

et al., 2020). However, the main spatial factors controlling the occur
rence of PF vary in different regions and scales (Liu and Lin, 2015; 
Wiekenkamp et al., 2016; Demand et al., 2019), and even the direction 
of influence of some soil properties on the PF varied in different regions 
(Koestel and Jorda, 2014; Larsbo et al., 2014, 2016). Wiekenkamp et al. 
(2016) found that the spatial occurrence of the PF could not be 
explained by watershed-scale topographic or soil-specific controls, and 
there was no significant relationship between the proportion of the PF 
occurrence and spatial factors. However, some other studies found that 
soil texture, topography, and land cover significantly influenced the 
occurrence of PF (Demand et al., 2019; Tang et al., 2020). Liu and Lin 
(2015) found that the control of topography on the PF occurrence was 
amplified when the scale was expanded from hillslope to watershed 
scale. In addition, some soil properties related to soil porosity (e.g., soil 
bulk density, and saturated hydraulic conductivity (KS)) have a complex 
effect on the PF. Intuitively, higher soil porosity enhances the PF since 
macropores provide an important pathway for the PF (Mossadeghi- 
Björklund et al., 2016), but high soil porosity implies a larger surface 
area between the pores and the matrix, which is detrimental to the 
occurrence of the PF (Jarvis, 2007; Larsbo et al., 2016). These inter
acting spatial factors have different sensitivities and directions of in
fluence on the occurrence of PF (Nimmo, 2020). 

Temporal factors controlling the occurrence of PF include rainfall 
characteristics and initial soil moisture (SMint) (Wiekenkamp et al., 
2016; Guo and Lin, 2018; Demand et al., 2019). Wet soils, high rainfall 
amounts, and intensity are generally considered conditions conducive to 
the occurrence of PF (Liu and Lin, 2015; Wiekenkamp et al., 2016; De
mand et al., 2019). However, the control of temporal factors on PF 
occurrence is also complex. Liu and Lin (2015) found that the occur
rence of the PF requires rainfall to be above a threshold on the valley 
floor and swales, but the PF can occur directly on hilltops. Similar 
rainfall thresholds were found by Wiekenkamp et al. (2016). In addition, 
the influence of SMint on the PF also varies across different study areas. 
In hydrophobic soils, dry soil favors the occurrence of PF, but PF in other 
areas is positively correlated with SMint (Guo and Lin, 2018; Demand 
et al., 2019; Tang et al., 2020). 

Current models of the PF lag in empirical understanding due to the 
complexity of the PF control factors and the specificity of control effects 
(Jarvis et al., 2016; Guo and Lin, 2018). Moreover, current research on 
the PF (identification of the PF using soil moisture observation) mainly 
focused on humid mountains or hills (e.g., Graham and Lin, 2011; Liu 
and Lin, 2015; Wiekenkamp et al., 2016; Demand et al., 2019; Guo et al., 
2019; Tang et al., 2020). Few studies have investigated the occurrence 
and control of PF in cold, mountainous areas (Li et al., 2013; Hu et al., 
2016). It is important to explore mechanisms for the control and 
occurrence of the PF in different environments to improve the under
standing of the PF and to construct predictive models. In addition, due to 
the interaction of control factors in the natural environment and the 
relationship between them and the PF is highly nonlinear (Liu and Lin, 
2015; Guo and Lin, 2018), and it is very difficult for traditional statis
tical methods to deal with this complex issue. In the past decades, 
Classification and Regression Trees (CART) and Random Forests (RF) 
have been widely used in hydrology-related research due to their 
powerful ability to handle complex nonlinear problems, such as water 
quality analysis (Li et al., 2019), flood prediction (Choubin et al., 2019), 
and determination of relationships between different soil properties 
(pedotransfer functions) (Koestel and Jorda, 2014; Lai et al., 2022a; 
Palladino et al., 2022). The CART provides a conceptual framework for 
automatic model selection that is not only easy to interpret, and 
monotonic changes in explanatory variables do not affect the model 
structure (Genuer and Poggi, 2020). The RF is suitable for dealing with 
high-dimensional cases like PF occurrences that have complex control 
factors (the number of variables is much greater than the number of 
observations) (Biau, 2012; Genuer and Poggi, 2020). 

Our previous preliminary experiment explored the occurrence of PF 
under the typical land covers in mountain areas (Kang et al., 2022). We 

were able to identify soil properties, vegetation, and rainfall to affect the 
occurrence of PF. However, due to the limitations of the research 
method, the following questions remain unanswered: 1) What are the 
spatial and temporal patterns of PF occurrences at a large scale? 2) Can 
we develop a model to predict the spatial pattern of PF occurrences in 
large-scale mountainous areas? 3) Can we identify the mechanisms that 
trigger the occurrence of the PF, e.g., under what precedent soil condi
tions and rainfall does the PF occur (the temporal patterns of the PF 
occurrence)? This study is the first to try to find answers to the above 
questions based on a large-scale, long-term in-situ soil moisture obser
vation network in high and cold mountainous areas using the latest 
machine learning techniques. 

2. Data and methods 

2.1. Study area 

This study was conducted in the upper reaches of the Heihe River 
Basin, the second-largest inland river watershed (or terminal lake) in 
Northwest China (Cheng et al., 2014). It is located in the Qilian Moun
tains (97̊29΄-101̊32΄E, 37̊43΄-39̊39΄N) on the northern margin of the 
Qinghai-Tibet Plateau and has an area of over 27 × 103 km2 (Fig. 1). The 
study area is in elevation from 1700 to 5600 m above sea level. The 
average annual temperature ranges from − 3 to 7 ◦C and the annual 
precipitation ranges from 200 to 700 mm, with most of the rainfall 
occurring in the summer (65% of total rainfall between June and 
August) (Geng et al., 2014; Zhang et al., 2016), and the precipitation 
shows a decreasing trend from the eastern region to the western region 
(Geng et al., 2017). Due to the strong vertical differences in temperature 
and precipitation, the soils and vegetation show strong spatial hetero
geneity and vertical zonation in the study area. The landscapes include 
glaciers, cold deserts, alpine meadows, shrub meadows, forests, grass
land, and desert grassland from high to low elevation (Lu et al., 2017). 
The main vegetation consists of forests, shrubs, meadows, grasslands, 
and sparse vegetation (Tian et al., 2017). Under the influence of zonal 
differences in vegetation and temperature, the main soil types (FAO 
World Reference Base (WRB)) in the west are Phaeozem and Podzol, 
while Mountain grassland soil, Chernozem and Leptosol soils predomi
nate in the southeast. The main soil textures in the area include silt loam, 
sandy loam, and silt (USDA classification), and the loam and sandy loam 
soils are mainly located in the upper mountainous areas, while the silt 
soils are mainly located in the upper river valleys (Lu et al., 2017). 

2.2. Data 

2.2.1. Soil moisture network 
In this study, we analyzed soil moisture measured with 30 min in

tervals from 2014 to 2019 at 32 stations established in the upper reaches 
of the Heihe River Basin (Fig. 1). These stations cover different soil, 
vegetation, and elevation zones of the study area (Zhang et al., 2017a; 
Tian et al., 2019). Soil moisture and temperature sensors (5TE sensors, 
Decagon Devices Inc., Pullman, USA) were installed at each station at 
depths of 5, 15, 25, 40, and 60 cm. Soil samples were also collected at 
each depth and used to analyze the soil properties (including bulk 
density, soil porosity, KS, soil organic content (SOC), soil–water char
acteristic curve (n, α, saturated soil moisture (SMs), and residual soil 
moisture (SMr) are the parameters of the soil–water characteristic curves 
(van Genuchten model) (van Genuchten, 1980)), and soil texture), see 
Tian et al. (2017) for more details. Tian et al. (2023) demonstrated the 
spatial distribution characteristics of major soil properties in the study 
area. The clay shows a decreasing trend from eastern to western (similar 
to the changes in rainfall and vegetation), while the bulk density in
creases from eastern to western. The KS, n, SMs, SMr, silt, and sand are 
higher in the central region than in the west and east, while the α shows 
an opposite variation, with the central region lower than the west and 
east. 
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In addition, we calculated the field capacity, wilting point, effective 
porosity, and total porosity. The field capacity and wilting point are the 
soil moisture at soil water pressure potential of − 330 kPa and − 1500 
kPa, respectively (can be calculated from soil-water characteristic 
curves). The effective porosity is the difference between the total 
porosity and field capacity (Rawls et al., 1998), while the total porosity 
is calculated using the bulk density (Hao et al., 2008). 

TP = 1 −
BD
PD

(1) 

where BD is the bulk density; PD is the soil particle density, generally 
taken as the average value of 2.65 g/cm3. 

To avoid the impact of data quality on subsequent analyses, checks of 
data credibility and consistency over time were performed according to 
the data quality control methods (Dorigo et al., 2013; Wiekenkamp 
et al., 2016): 1) excluding soil moisture data during the seasonal freezing 
periods based on soil temperature and soil moisture dynamics during the 
freeze–thaw cycles (Dorigo et al., 2013; Yang et al., 2017); 2) removing 
outliers (e.g., values outside the 1–90 vol% range (Wiekenkamp et al., 
2016) and unreasonable fluctuations) (Tian et al., 2019); 3) excluding 
unreliable data due to instrumentation problems (e.g. insufficient bat
tery power) by visual data inspection; 4) retaining only the periods when 
all five layers of soil moisture meet quality control. The periods in which 
soil moisture at each station met the above criteria are shown in Fig. S1. 
All stations except the MCG 2 met these criteria for more than 50% of the 
time period, and 78% of the stations met these criteria for more than 
70% of the time period throughout the study period. 

It is worth noting that the sensors of the Rock 1, Rock 2, and Rock 3 
(Fig. 1) were installed in gravel, which might make the measured soil 
moisture inaccurate. In addition, it was not possible to determine the soil 
properties at these stations due to the inability to sample with ring 
knives (Zhao et al., 2020), so these three stations were excluded from the 
subsequent analysis. 

2.2.2. Rainfall and normalized difference vegetation index (NDVI) 
We did not deploy ground-based meteorological observation stations 

for rainfall observations at these locations due to budget constraints. 
Therefore, to analyze the impact of rainfall on the PF occurrence, we 

extracted rainfall data from 2014 to 2018 for these stations from the 
widely-used reanalysis dataset (China Meteorological Forcing Dataset, 
CMFD) (time resolution is 3 h, spatial resolution is 0.1◦ × 0.1◦) (Yang 
et al., 2010; He et al., 2020). CMFD has been widely used in China (Meng 
et al., 2021; Zhang et al., 2021), and it is the relatively high-accuracy 
rainfall dataset in the Qilian Mountains (Lai et al., 2022b). Using the 
CMFD, we calculated the average rainfall (Pmean) for each station for the 
annual growing season (from May to October each year). 

We also extracted the NDVI during the growing season from 2014 to 
2019 from the surface vegetation index data (time resolution is 8 days, 
spatial resolution is 30 m × 30 m; MODIS (250 m) and Landsat (30 m) 
time series data were fused by the Gap Filling and Savitzky-Golay 
method) of the Qinghai-Tibetan Plateau (Cao et al., 2022; Chen et al., 
2021) and used their maximum values as the NDVI of the corresponding 
stations. In the classification trees, the NDVI at the corresponding time 
of the infiltration event was used as the explanatory variable. Both the 
rainfall data and NDVI were from the National Tibetan Plateau Data 
Center (https://data.tpdc.ac.cn/en/). 

2.3. Hypothetical control mechanisms for the PF 

In order to gain a preliminary understanding of the PF in the study 
area, we integrated knowledge from some in-situ observation stations 
and concepts from the literature to propose possible PF control mecha
nisms (Liu and Lin, 2015; Wiekenkamp et al., 2016; Guo and Lin, 2018; 
Demand et al., 2019; Kang et al., 2022). The main spatially controlling 
factors for PF occurrence are soil properties, vegetation, and topo
graphic features. In particular, the effect of topography on the control of 
PF occurrence is more important at the watershed scale. Soil properties 
that control the PF occurrence are mainly macropore and hydropho
bicity, and their related soil properties (e.g., SOC, bulk density, KS, etc.). 
Temporal controls on the PF occurrence are mainly the SMint and rainfall 
characteristics, and the higher rainfall, the wetter soil (as opposed to 
hydrophobic soils), and the more likely the PF will occur. 

Fig. 1. Location of the study area and the distribution of the soil moisture stations. HCG and MCG represent high-coverage grassland and medium-coverage 
grassland, respectively. 
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2.4. Infiltration event 

2.4.1. Determination of the infiltration event 
According to the definition of infiltration events by Tian et al. (2019) 

and Kang et al. (2022), the starting and ending times of infiltration 
events were determined for each station as follows (Fig. 2a): 1) selecting 
the time series of continuous increase in soil moisture, defining the time 
of the start of the soil moisture increase as the start time of the infil
tration event (SMint) and the time of the end of the soil moisture increase 
as the end of the infiltration event (SMend); 2) combining infiltration 
events that occurred within 6 h into the same event; 3) excluding events 
with the soil moisture increase less than 1% (SMend - SMint less than 1 vol 
%) (Saito et al., 2013; Wiekenkamp et al., 2016; Demand et al., 2019). 
The identification of infiltration events was performed automatically 
using a dedicated Matlab script. The total number of selected infiltration 
events for these stations is shown in Fig. S2. In order to characterize the 
soil moisture change process for infiltration events, we defined the 
following quantitative indexes (Fig. 2a) (Lozano-Parra et al., 2016; Tian 
et al., 2019): 

The initial soil saturation (Sint) was calculated by: 

Sint =
SMint − SMmin

SMmax − SMmin
(2) 

where SMmax and SMmin are the maximum and minimum values of 
the recorded soil moisture, respectively. 

Initial drying time (DTint, hour): 

DTint = Startingtimej − Endingtimej− 1 (3) 

where j is the serial number of the infiltration event. 
Maximum variation or slope of the soil moisture wetting curve (Smax) 

(vol. %/hour) (Lozano-Parra et al., 2016): 

Smax = max
(

SMt+Δt − SMt

Δt

)

× 2 (4) 

where SMt is the soil moisture value in the time t, and Δt is the 

variation of the time in the measurement interval, which is 30 min. 
Soil water storage increment (SWS, cm): 

SWS = dl ×
∑Endingtime

t=Startingtime
ΔSMj

t,l × 0.01 (5) 

with 

ΔSMj
t,l =

⎧
⎨

⎩

ΔSMj
t,l,ΔSMj

t,l > 0

0, ΔSMj
t,l < 0

(6)  

where ΔSM j
t,l = SM j

t+Δt,l − SM j
t,l; ΔSM j

t,l is the change of soil moisture for 

the jth infiltration event in the l layer (vol. %); ΔSM j
t,l is multiplied by 

0.01 to convert its units to cm3/cm3; dl is the thickness of the lth layer of 
soil. 

2.4.2. Event classification 
These events meeting the described quality criteria can be classified 

into three categories based on the starting time of the infiltration event 
at two adjacent layers (Liu and Lin, 2015; Wiekenkamp et al., 2016; 
Demand et al., 2019): 

I. Not classifiable (NC): Events where the upper soil moisture (5 cm) 
responds (SMend - SMint ≥ 1 vol%) but the lower soil moisture does not 
(SMend - SMint less than 1 vol%) (Demand et al., 2019) (e.g., the third 
layer of soil moisture responds but the fourth layer of soil moisture does 
not respond, in Fig. 2b); 

II. PF: Events where at least one depth sensor detects an out-of- 
sequence soil moisture response or both layers respond simultaneously 
(e.g., the third soil layer shows a soil moisture response before the 
second layer, in Fig. 2b); 

III. Sequential flow (SF): Events followed the expected sequence of 
soil moisture responses with depth (e.g., the second soil layer shows a 
soil moisture response before the third layer). 

According to the above principles, we can use the soil moisture of 
two adjacent layers to detect whether PF was detected between them. 

Fig. 2. Example of determining infiltration event and schematic diagram of variables SMend, SMint, Smax, and DTint (a), and schematic diagram of the PF, sequential 
flow (SF), and not classifiable (NC) events (b). 
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We can classify four types of response scenarios (Layer 1–2, Layer 2–3, 
Layer 3–4, and Layer 4–5) (Kang et al., 2022). 

In addition, besides the event classification for the adjacent layers, 
we defined the event classification for the whole soil profile using the 
following rules: 

I. NC: only the first layer (5 cm) of soil moisture showed a response; 
II. PF: at least one soil layer was detected with an out-of-sequence 

response; 
III. SF: sequential response at all soil layers. 
The PF proportion was calculated from the ratio of PF events to total 

infiltration events (total number of infiltration events in the first soil 
layer (5 cm)). In the subsequent analysis, except for the special 
description of the PF proportion of the different layers, all other PF 
proportions refer to the PF proportions of the profiles. 

The relative proportion of PF in each layer is the ratio of the PF 
events detected in that layer to the number of PF events in the entire 
profile. For example, the PF relative proportion of soil Layer 2–3 can be 
calculated by: 

PFL2− 3 =
NPF,L2− 3

NPF,profile
× 100 (7)  

where NPF, L2–3 is the number of PF events detected between layer 2 (15 
cm) and layer 3 (25 cm); NPF, profile is the number of PF events detected 
for the entire profile. 

2.5. Methods of analysis 

2.5.1. Classification and regression trees 
Classification and Regression Trees (CART) refers to a statistical 

method for constructing tree predictors (also called decision trees) for 
both regression and classification problems (Breiman et al., 1984). 
CART is an upside-down tree (the root is at the top). The leaves of the 
tree are nodes without descendants, and the other nodes of the tree are 
non-terminal nodes. Also, each non-terminal node has two child nodes; 
therefore, the tree is a binary tree. Nonterminal nodes distinguish be
tween two child nodes with a judgment condition, marking the leaves 
with a class label or the value of a response variable. Building a CART is 
a two-step process. Firstly, a maximal tree is constructed using recursive 
binary splitting, and the second step, called pruning, builds a sequence 
of optimal subtrees pruned from the maximal tree sufficiently, using the 
complexity parameter (CP) (Rothwell et al., 2008; Genuer and Poggi, 
2020). The “rpart” package (Therneau and Atkinson, 2018) and the 
“rpart.plot” package (Milborrow, 2018) in R were used to construct the 
classification tree in this study. 

In order to determine the occurrence pattern of the PF, we con
structed classification trees using vegetation (NDVI), previous soil con
ditions (SMint and DTint), and water input characteristics (rainfall 
amount and intensity) as explanatory variables, and the type of infil
tration events (the PF or Non-preferential flow (NPF, including NC and 
SF)) as the response variable. Given the absence of in situ rainfall ob
servations in the soil moisture network, we used surface soil moisture (5 
cm) dynamics (SWS and Smax) instead of rainfall characteristics (rainfall 
amount and intensity) (Zhu et al., 2014; Glaser et al., 2019). We con
structed classification trees (maximal tree) with events for each of the 
three typical vegetation stations (since there were few PF events at the 
bare land and meadow, only three vegetation types, forest, high cover 
grassland (HCG), and medium cover grassland (MCG), were selected) 
and for all the stations (excluding Rock stations) (Table 1). In order to 
test the reliability of the classification tree, we randomly selected 2/3 of 
the infiltration events to construct the classification tree and used the 
remaining events to verify the classification tree. The number of infil
tration events for different vegetation types and all stations is shown in 
Table 1. The error calculation formula for the classification tree is as 
follows: 

err =
1
n

∑n

i=1
1Yi∕=T(Xi) (8)  

where n is the number of infiltration events; Y is the response variable 
(PF or NPF); T is the constructed classification tree, X is the prediction 
variable, and T(X) denotes the type of event predicted by the classifi
cation tree. 

Pruning is the second step of the CART algorithm. Pruning is a model 
selection process with the idea of finding the best tree between two 
extremes: satisfying the allowed prediction error while minimizing the 
complexity (i.e., the number of nodes) (Genuer and Poggi, 2020). The 
subsequent analysis is based on the pruned tree. 

Once the tree is given, it is easy to use it to predict the type of 
infiltration event. Simply start at the root and determine in turn whether 
the explanatory variables meet the conditions of the nonterminal node, 
and if so, go to the left node, and if not, go to the right (Genuer and 
Poggi, 2020). By sequential judgments, the unique path from the root to 
the leaves is obtained, and the type of infiltration event (i.e., PF or NPF) 
can be determined. 

2.5.2. Random Forest 
Random Forest (RF) is a collection of un-pruned CART trees. Since 

individual trees are randomly perturbed, the forest benefits from a more 
extensive exploration of the space of all possible tree predictors, which 
always results in better predictive performance (Therneau and Atkinson, 
2018). The importance calculation and the selection of variables in this 
study were implemented through the “VSURF” package in R (Genuer 
et al., 2015; Genuer and Poggi, 2020). The steps are as follows: 

I. Ranking and preliminary elimination. Ranking the variables by 
decreasing importance, and eliminating the variables with low 
importance. 

II. Selecting variables for interpretation. Starting with the model 
with only the most important variables and ending with the model 
involving all the previously selected important variables, the average of 
the Out-Of-Bag error for these models is calculated, and finally, the 
model variables that lead to the lowest Out-Of-Bag error are selected. 

III. Selecting variables for prediction. From the variables selected for 
interpretation, a sequence of models is constructed by sequentially 
introducing the variables in increasing order of importance and itera
tively testing them. The variables of the last model are finally selected. 

The Out-Of-Bag error (OOB error) and importance of variables (VI) 
were calculated as follows: 

OOBerror =
1
n
∑n

i=1
(Yi − Ŷi)

2 (9)  

VI
(
Xj) =

1
q

∑q

k=1

(
̃OOBerrorj

k − OOBerrork

)
(10) 

where n is the number of samples; Y is the response variable; Ŷ is the 

Table 1 
The stations correspond to different vegetation types and the number of infil
tration events in the training and validation sets.  

LUC Stations Number of infiltration 
events 
Training Validation 

Forest* Shrub 1, Shrub 3, Forest 1, Forest 2, Forest 3 228 113 
HCG HCG 1, HCG 2, HCG 3, HCG 4, HCG 5, HCG 6, 

HCG 7, HCG 8 
511 255 

MCG MCG 1, MCG 2, MCG 3, MCG 4, MCG 5, MCG 6, 
MCG 7, MCG 8 

432 215 

ALL Excluding Rock 1, 2 and 3 1681 839 

Note: * In order to have enough events to construct a representative classifica
tion tree, we merged the forest and shrub stations. Shrub 2 was not added to the 
subsequent analysis because the temporal factor of the station had little influ
ence on whether the PF occurred. 

W. Kang et al.                                                                                                                                                                                                                                   
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corresponding predicted value; X is the explanatory variables; q is the 
number of trees constructed; OOBerrork is the OOB error of trees k; 

̃OOBerrorj
k is the error of the trees k after perturbation of Xj (Randomly 

permute the values of variable Xj). 

2.5.3. Regression and statistical analysis 
The RF was used to determine the main control factors of the PF, but 

the exact relationship between these main control factors and the pro
portion of the PF occurrence is not determined by the method because 
the RF is a non-parametric method (Gao et al., 2018). Cftool, an appli
cation in MATLAB (R2022a, The MathWorks), was used to establish the 
empirical formula for predicting PF in this study. We used the coefficient 
of determination (R2), adjusted coefficient of determination (Adjusted 
R2), and root mean square error (RMSE) to assess the predictive power of 
the empirical formula. 

R2 =

∑
(Ŷ − Y)2

∑
(Y − Y)2 (11)  

AdjustedR2 = 1 −

∑
(Y− Ŷ )2

n− 2∑
(Y − Y)2

n− 1

(12)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(Y − Ŷ )2

n

√

(13) 

where Y is the means of measured values. 

3. Results 

3.1. Variation of PF proportion with depth 

Fig. 3 shows the relative proportions of PF detected at different 
depths for the 32 soil moisture stations. The relative proportion of 
detected PF events gradually decreases with increasing depth, but at 
Layer 4–5, median of the PF relative proportions is higher than at Layer 
3–4. The SWS proportions of PF events (Because it is not possible to 
distinguish between the amount of water transported by SF and PF, the 
SWS of PF events here is the result of the combined effect of SF and PF.) 
are also calculated (Fig. 4a), and their distribution (median value) at 
different depths is similar to the distribution of the relative proportions 

of PF and is also larger for Layer 4–5. For individual events, the mean 
SWS (SWSmean) of the detected PF events is greater than the SF events, 
and the SWSmean in deep soils (Layer 3–4 and Layer 4–5) is also larger 
than in shallow soils (Layer 1–2 and Layer 2–3) (Fig. 4b). In deep soils, 
the water transport of the PF events is much larger than that of the SF 
event, while in shallow soils, they are close to each other. 

We also analyzed in detail the relative proportions of PF in different 
soil horizons at all stations (Fig. 5). The results showed that the distri
bution characteristics of PF in the soil horizons of different vegetation 
types were different. At Barren, PF was mainly concentrated above the 
second soil layer (15 cm) (Layer 1–2); at MCG, PF was mainly concen
trated above the third soil layer (25 cm) (Layer 1–2 and 2–3); at HCG, PF 
was concentrated above the fourth soil layer (40 cm) (Layer 1–2, 2–3, 
and 3–4); at Meadow, Shrub, and Forest, PF was concentrated primarily 
above the fifth soil layer (60 cm) (Layer 1–2, 2–3, 3–4, and 4–5) (Fig. 5). 
These distribution characteristics correlate with the distribution of roots 
at each station. As vegetation cover increased and roots penetrated 
deeper into the soil, the thickness of soil where PF was detected 
increased accordingly. 

3.2. Differences in the PF proportion between stations 

Fig. 6 shows the proportion of PF occurrence at different stations. In 
general, the proportion of the PF gradually increases from Barren land to 
Meadow and grassland (MCG and HCG), and then to Shrub and Forest. 
However, at some stations, the proportion of the PF is much higher than 
at other stations with the same vegetation types. This difference implies 
that the occurrence of the PF is not only controlled by vegetation type 
but also influenced by other factors. The proportions of the PF, SF, and 
NC events at these stations are shown in Fig. 7. Most of the stations are 
dominated by the SF events (65.6%, 21 of the 32 stations) and the NC 
events (21.9%, 7 of the 32 stations), with a small proportion of the PF 
events (12.5 %, 4 of the 32 stations). Nonetheless, at some stations in the 
eastern and central parts of the study area, the proportion of PF events is 
higher. 

3.3. The spatial control of PF occurrence 

In order to explore the factors controlling the occurrence of the PF, 
we analyzed the correlations of 18 spatial attributes, such as soil texture, 
soil hydraulic properties, topography, and vegetation, with the PF pro
portions. In general, the correlations are low, and significant correla
tions are only found between the SOC and NDVI, and PF proportions (P 
less than 0.05). The proportion of the PF shows a slight increase trend 
with increasing the SOC (Pearson R = 0.41), and with increasing the 
NDVI (Pearson R = 0.38). The relationship between the PF proportion 
and other factors, such as soil properties and topography, is not clear (P 
greater than 0.05). Obviously, the relationships between these spatial 
factors and the PF proportions are not simply linear, and their re
lationships need to be further analyzed using other statistical methods. 

3.4. The spatial estimation of the PF occurrence at the station-scale 

We further analyzed the relationship between the control factors and 
the PF to develop empirical relationships, which may be useful for hy
drological simulations. Given the complexity and intercorrelation of the 
PF control factors, we explored the relative influence of these control 
factors on the PF based on the VSURF. The result shows that the 
importance of variables of KS, SMr, SOC, α, Clay, and NDVI is higher than 
the other factors (Fig. 8), while KS and SMr are the final chosen inter
pretation and prediction variables. We used multiple nonlinear regres
sion to establish equations for predicting the PF proportions using the 
KS, SMr, SOC, and NDVI (there are significant correlations between the 
SOC and NDVI and the proportion of the PF occurrence) as prediction 
variables, respectively (Table 3). We found that the prediction equation 
built using the SMr has the best prediction performance (R2 = 0.43*) 

Fig. 3. The relative proportions of PF were detected at different soil depths. 
The dots and horizontal lines in the plot indicate the median of the relative 
proportions, the boxes indicate the 25–75% range, and the vertical lines indi
cate the 5th and 95th quartiles. 
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instead of the prediction equation built by SOC (R2 = 0.22*) or NDVI (R2 

= 0.15). In addition, the predictive performances of the equations were 
established using the KS and SMr, SOC and NDVI, and the SMr and SOC 
(SMr and SOC are the two variables with the best prediction performance 
using multiple nonlinear regression) as prediction variables, respec
tively (Table 3). We found that the equations built by the NDVI and SOC 

have the worst prediction performance (R2 = 0.37), while the other two 
equations had approximately similar performances (R2 = 0.49* and 
0.52*). Obviously, the KS and SMr play an important role in the pre
diction performance despite no significant correlation being found be
tween them and the proportion of the PF. This may be because the KS 
and SMr are influenced by other soil properties (such as bulk density, 

Fig. 4. The proportion of cumulative soil water storage increment (SWS) of PF events to cumulative SWS of all events (a); Mean SWS (SWSmean) for individual PF and 
SF events (b). The pentagram and the horizontal black line in the plot indicate the mean and median, respectively. SWS here is the incremental water storage in the 
lower soil layer. For example, the SWS of Layer 1–2 is the incremental water storage in the second soil layer (15 cm). We assumed that any increase in water storage 
in the second soil layer is transported from soil water in the first layer to the second soil layer through PF or SF events. 

Fig. 5. Relative proportions of PF for different soil layers at each station. Because no PF events were detected at Barren 1 and 4, MCG 2 and 4, HCG 5, and Meadow 3, 
these stations are not shown in the figure. 
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SOC, and effective porosity) and are indicators that can represent the 
overall soil hydraulic characteristics. Since the prediction performance 
of the equations built with the KS and SMr (Adjusted R2 = 0.39; RMSE =
11.65%) and with the SMr and SOC (Adjusted R2 = 0.39; RMSE =
11.64%) are comparable, we choose the relatively simple equation (Eq. 
(14) (R2 = 0.49*； Adjusted R2 = 0.39; RMSE = 11.65%) as the final 
prediction equation (Fig. S3). There are limitations to this kind of pre
diction that only uses spatial factors such as soil properties because 
spatial factors only provide flow paths for the occurrence of the PF, and 
temporal factors controlling the occurrence of the PF will be analyzed in 

Section 3.5. 

PF = 4.21 × Ks − 24.59 × Ks × SMr + 7734 × SMr
2 − 956.5 × SMr + 28.31

(14)  

3.5. Temporal control of the PF occurrence at the event scale 

Table 4 shows the importance of variables of each explanatory var
iable (tree before pruning) for different vegetation types. Sint is the most 
important factor controlling whether the PF occurs in Forest, MCG, and 
all stations, while Smax is the most important factor in HCG. However, 

Fig. 6. The proportion of the PF events at different stations.  

Fig. 7. The spatial distribution of annual mean precipitation (2014–2018, CMFD) in the study area and soil moisture stations, and the proportions of the PF, SF, and 
NC at each station. 
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the factors of the lowest importance of variables vary among vegetation 
types, in Forest and all stations are DTint, HCG is NDVI, and MCG is SWS 
(Table 4). 

Fig. S4-6 shows the results of classification trees after pruning for the 
three vegetation types. All four trees show good classification results 
with the validation errors and training errors less than 0.15 (except the 
validation error of Forest is 0.204) (Table 5). Therefore, we can deter
mine the occurrence pattern of the PF in different vegetation types by 
going through the classification trees. 

1) In Forest, the PF occurs when the NDVI is above 0.59, the rainfall 

exceeds a certain threshold (corresponding to the SWS greater than 0.31 
cm), and the Sint is greater than 0.57. In addition, when the Sint is less 
than 0.57, but rainfall intensity exceeds a certain threshold value (cor
responding to the Smax greater than 1.2 vol. %/h), and the Sint is greater 
than 0.15, there is also a high susceptibility to the PF (Fig. S4); 

2) In HCG, the PF occurs more frequently when rainfall intensity 
exceeds a certain threshold value (corresponding to the Smax greater 
than 9 vol. %/h), and the Sint is greater than 0.23 (Fig. S5); 

Fig. 8. Importance of variables (VI) ranked in descending order for the PF proportion. Due to missing soil properties data for some stations, only 25 stations were 
used for importance ranking. The FC, WP, Bulk, and EP refer to field capacity, wilting point, bulk density, and effective porosity, respectively. 

Table 2 
Pearson and Spearman correlation coefficients between spatial factors (soil properties, vegetation, topography, elevation, precipitation) and the PF proportions. (R =
correlation coefficient, significance: * = 0.05).   

Sand (%) Clay (%) Silt (%) KS (m/d) α n SMs (m3/ 
m3) 

SMr (m3/ 
m3) 

Bulk Density (g/ 
cm3) 

Pearson R − 0.15 0.16 0.14 0.11 0.19 − 0.07 0.11 0.06 − 0.23 
Spearman 

R 
0.01 0.34 − 0.01 0.30 0.33 0.01 0.11 0.06 − 0.23  

SOC (g/100 
g) 

Effective 
Porosity 

Field Capacity (m3/ 
m3) 

Wilting Point (m3/ 
m3) 

Elevation 
(m) 

Slope 
(◦) 

Aspect (◦) NDVI Pmean (mm) 

Pearson R 0.41* 0.25 − 0.03 0.12 0.28 − 0.06 − 0.03 0.38* 0.24 
Spearman 

R 
0.36 0.24 − 0.13 0.00 0.29 0.04 − 0.09 0.22 0.17  

Table 3 
Statistical parameters of equations obtained by multiple nonlinear regression. 
Only the spatial attributes and the PF proportions of the 25 stations used in 
VSURF were used to build these equations.  

Variables Regression equation** R2 Adjusted 
R2 

RMSE 
(%) 

KS − 1.357 × KS
2 + 10.73 × KS +

0.4368  
0.16  0.08  14.28 

SMr 8215 × SMr
2-1064 × SMr + 36.94  0.43*  0.37  11.80 

NDVI − 21.36 × NDVI2 + 46.1 × NDVI- 
5.518  

0.15  0.07  14.38 

SOC 0.6822 × SOC2-3.174 × SOC +
9.78  

0.22*  0.15  13.78 

KS and SMr 4.214 × KS-24.59 × KS × SMr +

7734 × SMr
2-956.5 × SMr + 28.31  

0.49*  0.39  11.65 

NDVI and 
SOC 

− 77.81 × NDVI2 + 81.9 × NDVI 
+6.205 × NDVI × SOC + 0.6968 
× SOC2-7.552 × SOC-6.328  

0.36  0.20  13.36 

SMr and 
SOC 

6601 × SMr
2-778.5 × SMr-3.961 

× SMr × SOC + 0.6038 × SOC2- 
3.053 × SOC + 26.81  

0.52*  0.39  11.64 

Note: * The multiple regression equation was significant. ** Only one form of the 
equation with the best simulation results was chosen here. 

Table 4 
Importance of variables of input variables for stations with different vegetation 
and all stations.  

LUC Importance of explanatory variables* 
Sint SWS NDVI Smax DTint 

Forest  33.343  28.386  18.118  16.53  12.276 
HCG  23.632  30.305  19.118  34.983  23.659 
MCG  26.403  14.445  16.286  20.375  19.390 
All 112.83  87.359  77.274  84.267  75.948 

Note: * The indicators of each event are calculated using the surface soil mois
ture (5 cm). Bold numbers represent the variable importance values corre
sponding to the variables with the highest importance in that vegetation type. 

Table 5 
The normalized complexity parameter, number of splits, and training and vali
dation errors of the different decision trees for different land covers.  

LUC Complexity 
Parameter 

Number of 
Splits 

Training 
Errors 

Validation 
Errors 

Forest  0.029 6  0.129  0.204 
HCG  0.027 5  0.077  0.106 
MCG  0.024 6  0.074  0.114 
All  0.010 7  0.105  0.111  
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3) In MCG, the PF occurs when the Sint is greater than 0.47, the 
rainfall amount is greater than a certain threshold value (corresponding 
to the SWS greater than 0.21 cm), the DTint is less than 113 h, the NDVI is 
greater than 0.23, and rainfall intensity is less than a certain threshold 
value (corresponding to the Smax less than 1.5 vol. %/h). In addition, the 
PF is more likely to occur when rainfall intensity exceeds a certain 
threshold value (corresponding to the Smax greater than 1.5 vol. %/h), 
but rainfall intensity exceeds a certain threshold value (corresponding to 
a value of Smax greater than 2.2 vol. %/h) (Fig. S6). 

In summary, we found various thresholds of these factors for 
different vegetation types to control the PF occurrences (Table 6), for 
example, the threshold for SWS in Forest is 0.31 cm but 0.21 cm in MCG; 
the threshold for Sint is 0.57 in Forest, 0.23 in HCG, and 0.47 in MCG. 
However, in all of these vegetation types, the PF is generally more likely 
to occur when the soil is wetter (larger Sint), and the Smax and SWS are 
larger. In addition, the PF is also more likely to occur in Forest with 
better vegetation (larger NDVI). But the PF events also occur at some of 
the nodes with smaller Sint (e.g., the 6th terminal nodes of Forest 
(Fig. S4)). 

Finally, a classification tree was constructed using all stations (except 
Rock) in order to identify patterns of the PF occurrence for the entire 
study area (Fig. 9). The PF is more likely to occur under the following 
three conditions (Fig. 9): 1) Smax greater than 11 vol. %/h, NDVI greater 
than 0.22 and Smax greater than 21 vol. %/h; 2) Smax less than 21 vol. 
%/h, but SWS less than 1.7 cm, Sint less than 0.57 and DTint greater than 
74 h; 3) DTint less than 74 h and Smax greater than 16 vol. %/h. Obvi
ously, this classification tree identifies the most complex conditions for 
the occurrence of the PF, as it includes all infiltration events. However, 
the conditions for the occurrence of PF vary among the in-situ obser
vation stations. 

4. Discussion 

4.1. The significance of the PF for ecohydrology 

Numerous studies have shown that PF can enhance the deeper and 
faster infiltration of rainfall into soils (Guo et al., 2018; Worthington, 
2019). We came to a similar conclusion that although PF events account 
for only a small fraction (less than 20%) of the infiltration events at most 
of the stations (about 75%) (Fig. 7), they play a crucial role in the 
recharge of soil moisture in the study area. Our results suggested that the 
PF events detected at depth can provide more water to the soil, 
compared to SF events (Fig. 4b). Some previous studies have shown that 
evaporation affects shallow soil moisture, while soil moisture that in
filtrates through the PF pathway to the deeper layers can be retained for 
a longer period to provide water for plant growth (Gazis and Feng, 2004; 
Jarvis et al., 2016; Guo et al., 2019). This finding reinforces the signif
icance of PF on soil water dynamics and water resources for plant 
growth, particularly in arid areas. 

4.2. The spatial distribution of PF 

We find that the relative proportion of PF detected decreases with 
depth but increases at Layer 4–5 (Fig. 3). As the soil depth increases, the 
root and macroporosity tends to decrease. This can lead to a decrease in 
the number of PF events detected (Liu et al., 2007; Wang et al., 2020). In 
contrast, the increased number of PF events at Layer 4–5 may be due to 

the high gravel content in the deeper soil layers (Yang et al., 2020). Both 
roots and gravels are important factors controlling the occurrence of PF 
(Johnson and Lehmann, 2006; Qin et al., 2015; Zhao et al., 2020). The 
proportion of PF also varies significantly between stations. The spatial 
distribution of PF proportions and annual precipitation (Fig. 7) and 
some soil properties (e.g., Clay) (Tian et al., 2023) in the study area are 
similar, both gradually increasing from west to east and from north to 
south. However, the variability of PF at different depths and different 
stations also depends on the control of spatial and temporal factors 
discussed below (Guo et al., 2018; Demand et al., 2019). 

4.3. The spatial control of PF proportion 

The previous study found that the soil properties significantly related 
to the proportion of PF occurrence in the study area are the bulk density, 
SMr, KS, and SOC (Kang et al., 2022). However, when upscaling to the 
catchment scale, only significant linear relationships remain between 
the SOC and PF (Table 2). In addition, a significant relationship was 
found between the NDVI and the PF at some stations (Kang et al., 2022) 
and the entire catchment scales (Table 2), which implies an important 
control of vegetation on the PF occurrence. Interestingly, although no 
significant linear relationship was found between the KS and SMr and the 
proportion of the PF occurrence at the catchment scale, they are the 
dominant factors controlling the PF occurrence identified using the 
VSURF method (Fig. 8) (This is in contrast to our hypothesis, which did 
not find the control of topographic factors on the occurrence of PF.). The 
results of the multiple nonlinear regression also proved that SMr and KS 
simulated the proportion of the PF occurrence better than SOC and NDVI 
(Table 3). This implies that the RF method can find the intrinsic effects of 
prediction variables (Koestel and Jorda, 2014; Lai et al., 2022a) on the 
response variables that cannot be obtained through traditional methods, 
such as significant analysis. 

The most important factor controlling the proportion of PF occur
rence is KS (Fig. 8). It is worth noting that in the previous study, a 
positive correlation between the KS and the PF occurrence proportion 
was found (Kang et al., 2022), but our results show that the relationship 
between the PF proportions and KS is nonlinear (Table 2 and 3). Previous 
studies have found that PF is more likely to occur in soils that contain 
only a few continuous but poorly interconnected large pores (Jarvis, 
2007; Bianchi et al., 2011). This is attributed to the fact that a well- 
connected network of small and macropores increases the lateral con
vection and diffusion of water between pores and soil matrix during 
infiltration while decreasing vertical transport (Jarvis, 2007; Koestel 
et al., 2012). Many soil properties influenced by porosity have this 
contradictory effect on the PF, such as the bulk density and KS (Mossa
deghi-Björklund et al., 2016; Nimmo, 2020). Larsbo et al. (2014) pro
posed a conceptual model to explain this phenomenon, as pore 
connectivity in the soil decreases, the PF intensity initially increases and 
then decreases. 

We established an empirical relationship (Eq. (14) between the PF 
and soil properties (KS and SMr). This relationship, along with the spatial 
distribution of KS and SMr, was used to characterize the spatial distri
bution of the proportion of PF occurrence across the study area. In 
addition, the equation can also be used to determine the proportion of 
PF occurrence in similar regions around the globe, providing a pre
liminary understanding of the PF characteristics of the region. 

Previous studies have also established empirical relationships be
tween spatial factors and the proportion of PF occurrence, but the main 
factors controlling the occurrence of PF varied greatly in different 
studies (Liu and Lin, 2015; Gao et al., 2018). The empirical relationships 
we established can only provide a limited simulation of the proportion of 
the PF occurrence (R2 = 0.49*) since only 50–66% of the variability of 
the PF is related to spatial factors such as soil properties (van Schaik, 
2009). Spatial factors provide the pathway for the occurrence of the PF, 
while temporal factors determine whether the PF occurs at each station 
(Guo and Lin, 2018). 

Table 6 
The threshold for the temporal factors for initiating the PF.   

Sint SWS (cm) NDVI Smax (vol. %/h) DTint (h) 

Forest  0.15  0.31  0.59 1.2 – 
HCG  0.23  –  – 9 – 
MCG  0.47  0.21  0.23 2.2 113 

Note: - The pruned classification tree does not have this variable. 
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4.4. Temporal control of the PF occurrence 

Previous studies have found that rainfall characteristics and SMint 
together determine whether the PF occurs (Guo and Lin, 2018). How
ever, the mechanisms controlling the occurrence of PF are complex due 
to the interplay of these factors. The present studies mainly focused on 
the correlation between the PF and these control factors (e.g., Liu and 
Lin, 2015; Wiekenkamp et al., 2016; Demand et al., 2019), and it’s hard 
to determine the occurrence pattern of the PF. However, using the CART 
we can determine the mechanism of the PF occurrence, i.e., under which 
circumstances the PF occurs. 

We found that sufficient moisture input (SWS and Smax greater than 
thresholds) is required for the PF to occur, and the threshold varies 
across vegetation types (Table 6). It may imply that the PF is initiated by 
different rainfall amounts and intensities in the different vegetation 
types, which is similar to the previous findings. Liu and Lin (2015) found 
that rainfall amount needs to exceed a threshold for the PF to occur at 
valley floors and swales, but the PF can occur directly at hilltops. Wie
kenkamp et al. (2016) found that the effect of rainfall on PF is governed 
by SMint, especially for rainfall events over 25 mm, where the drier the 
soil, the more likely PF is to occur. A similar phenomenon is found in this 
study at the Forest, where the probability of PF occurring is high when 
SWS is greater than 0.31 cm, but Sint is less than 0.57 (Figs. S4, 6th 
terminal node). In addition, the NDVI is not only related to the pro
portion of the PF occurrence as a spatial factor (differences in NDVI 
between stations) (Table 2) but also as a temporal factor (changes in 
vegetation) controlling the occurrence of the PF in Forest (Fig. S4 and 
Table 4). 

We also constructed the occurrence pattern of the PF for the whole 
region using the infiltration events at all stations (Fig. 9). The PF occurs 

under conditions in which rainfall intensity and amount exceed certain 
thresholds and the initial soil wetting which is similar to previous 
studies (Liu and Lin, 2015; Wiekenkamp et al., 2016; Demand et al., 
2019). The specific thresholds for the occurrence of the PF can be ob
tained using the CART, and although limited by the absence of rainfall 
observations, this method appears to have great potential for the 
determination of the PF occurrence patterns. In conclusion, spatial and 
temporal factors together control the occurrence of PF in the study area. 

4.5. Limitations and future considerations 

Our previous study has found that vegetation, rainfall, soil proper
ties, and SMint influence the occurrence of PF. Specifically, low bulk 
density, low SMr, high KS, and high SOC favored the occurrence of PF; 
low Sint favored the occurrence of the PF in areas with high sand content 
(probably due to hydrophobicity), while high Sint favored the occurrence 
of the PF in areas with low sand content (Kang et al., 2022). However, 
the model that predicts the spatial pattern of the PF and the mechanism 
triggering the temporal occurrence of the PF remains unavailable. In this 
study, the occurrence pattern of the PF and the prediction equation of 
the proportion of the PF occurrence are determined using the CART, RF, 
and multiple nonlinear regression based on the infiltration events at a 
large scale using 29 observation stations. 

However, the detection of the PF at distinct depths in this study has 
some limitations. It should be noted that detecting the PF at a specific 
depth does not guarantee that PF is taking place at that depth. Instead, 
detecting an out-of-sequence response at a certain layer indicates the 
presence of a PF path above a certain layer. For instance, the detection of 
PF in Layer 3–4 may be attributed to the existence of a PF path between 
Layer 3–4, leading to a synchronized response of soil moisture in both 

Fig. 9. Classification tree of NPF/PF for all stations (except Rock) generated by CART. The red and blue columns are the nodes of the tree and represent PF events and 
NPF events, respectively. The size of the different colored columns and the number in the column indicate the proportion of the corresponding type of events in that 
node. The green number below the node indicates the proportion of observations for that node to the total number of events. 
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layer 3 and 4. However, it is also possible that a PF path exists between 
Layer 2–4 or 1–4, which can also lead to the out-of-sequence response at 
Layer 3–4. While the change in the relative proportion of PF (Fig. 3) with 
depth may not accurately represent the vertical distribution of the PF 
path, it does serve as a reference for identifying its vertical variation. As 
far as we know, the vertical distribution of macropores can only be 
assessed using techniques such as staining experiments or X-ray 
computed tomography of soil columns (Anderson et al., 1990; Katuwal 
et al., 2015; Zhang et al., 2017b; Zhang et al., 2018). These invasive 
methods can only obtain the occurrence pathway of PF at the sampling 
moment. Instead, by analyzing the PF detected at varying depths, it is 
possible to obtain long-term dynamic characteristics of the pathways in 
which the PF occurs. Moreover, this does not impact the assessment of 
whether the PF is occurring in the actual profile. 

In addition, the data sources in this study have some limitations. 
Since no in situ rainfall observation is available, some indicators 
calculated from soil moisture dynamics are used instead of the rainfall 
characteristics to construct the PF occurrence pattern, which may in
fluence the computed rainfall thresholds. Previous studies have found a 
monotonic relationship between rainfall characteristics and soil mois
ture dynamics (Zhu et al., 2014, 2021; Yang et al., 2018; Glaser et al., 
2019), and the advantage of the CART approach is that monotonic 
changes in the explanatory variables do not affect the structure of the 
final PF occurrence pattern (De’ath and Fabricius, 2020; Genuer and 
Poggi, 2020). However, it is undeniable that there are variations in the 
relationship between rainfall characteristics and soil moisture dynamics 
at different stations, and therefore there are large deviations between 
the thresholds obtained for PF initiation and the true thresholds. We also 
attempted to use the available rainfall datasets, but the current rean
alysis datasets (e.g., CMFD) are not effective in estimating rainfall in
tensity in mountainous areas (Lai et al., 2022b), and the estimation error 
of rainfall intensity, in particular, is large (RMSE greater than 0.5 mm/ 
3h, and R2 ≤ 0.025) (Fig. S7). 

In addition, limited by the harsh mountainous environment, the 
measurement interval of soil moisture data was 30 min, which is coarser 
for identifying the PF (e.g., Hardie et al., 2010; Liu and Lin, 2015; 
Wiekenkamp et al., 2016; Demand et al., 2019), may cause some un
certainty in the identification of the PF. Finally, due to non-human 
factors such as instrument failure caused by animals (yak, rat, etc.), 
data gaps exist in the time series of soil moisture available at each station 
(Fig. S1). Therefore, the number of infiltration events identified at each 
station varies (Fig. S2) (mainly because rainfall varies greatly from 
station to station), which may also contribute to some uncertainty. 
However, the stations used in this study include the typical soils, vege
tation, and elevation zones across the high and cold mountainous areas 
(2.7 × 104 km2). The soil moisture at these stations was monitored over 
6 years (2014–2019), and the missing soil moisture data at most stations 
are only a small fraction of the data series (Fig. S1). Previous studies 
have concluded that 1 year of continuous monitoring is sufficient to 
determine the proportion of PF occurrence, and greater than 3 years is 
sufficient to determine the controlling factors for PF (Graham and Lin, 
2011; Liu and Lin, 2015). Thus, the uncertainty due to differences in soil 
moisture series is small and can be ignored. The large-scale and long- 
term soil moisture observations make the recognized patterns and 
mechanisms of the PF occurrence more representative of the study area 
and robust than the other previous studies (e.g., Liu and Lin, 2015; 
Wiekenkamp et al., 2016; Demand et al., 2019). Thus, the datasets used 
in this study help to extend the methods and the results to other similar 
high and cold mountainous regions. 

Results indicate that these methods are significant for determining 
the occurrence mechanism of PF. On the one hand, RF can obtain the 
intrinsic influence of some factors on the proportion of the PF occur
rence, which is not available by traditional methods (Koestel and Jorda, 
2014) (Fig. 8); on the other hand, the occurrence pattern of the PF 
constructed by CART is not available by other existing methods (Fig. S4- 
6, Fig. 9 and Table 6). To further enhance the understanding of the PF 

occurrence mechanisms, we need to collect soil moisture datasets from 
observation networks in different climates, soils, topography, and 
vegetation. We need also to use more accurate rainfall data to construct 
the temporal patterns of the PF occurrence. Moreover, since these 
methods utilize some common environmental parameters (such as KS, 
SMr, rainfall characteristics, and SMint), it is plausible to couple the PF 
prediction models and occurrence patterns with hydrological models to 
improve the accuracy of hydrological modeling. 

5. Conclusion 

Our study identified a large number of PF infiltration events in the 
high and cold mountainous areas of the Qilian Mountains, based on 
profile soil moisture data from a long-term monitoring network. By 
combining these long-term observations with the machine learning 
methods of RF and CART, we revealed the robust distribution and 
spatiotemporal control mechanisms of PF in mountainous areas. The 
main findings of our study are as follows:  

• The PF varied considerably in the mountainous areas, and both site 
factors (e.g., soil properties and vegetation) and dynamic factors (e. 
g., SMint and rainfall characteristics) control the occurrence of the PF 
at large-scale mountainous areas.  

• As soil depth increases, the relative proportion of PF events detected 
tends to decrease. With increasing vegetation cover, the dominant 
soil layer in which PF was detected increased.  

• Based on the RF, the study identified the KS and SMr as the main local 
factors controlling the spatial distribution of the PF, which can’t be 
identified using the conventional methods of correlation analysis. 
Furthermore, an equation to predict the spatial distribution of PF 
proportion was developed with reasonable accuracy in mountainous 
regions.  

• Based on the CART, the PF temporal occurrence patterns were 
established for different vegetation types and the whole catchment in 
the Qilian Mountains, and it was found that the PF is initiated when 
the temporal control factors exceed certain thresholds, with SMint, 
rainfall amount, rainfall intensity being the main factors. 

Our study provides new insights into the mechanism of the PF by 
comprehensively analyzing its spatiotemporal controlling factors, which 
can be useful for eco-hydrological studies in large-scale mountainous 
areas. Additionally, we demonstrate the great potential of combining in- 
situ soil moisture sensor networks with machine learning techniques, 
such as the CART and RF, to explore the complex mechanism of the PF. 
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