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ARTICLE INFO ABSTRACT

Handling Editor: Morgan Cristine L.S. The complexity of the spatial distribution and temporal occurrence of preferential flow (PF) makes it challenging
to understand the mechanisms of PF. This study aims to identify the spatial and temporal patterns of PF
occurrence using machine learning (Classification and Regression Trees and Random Forests) in the Qilian
Mountains, Northwest China. Our results show that detected PF events transport much more rainfall down to the
subsoil than non-PF events. Different vegetation types exhibit variations in the main soil layers where PF occurs,
which is closely related to the distribution of roots. The PF proportion varies significantly both vertically and
horizontally. Based on the Random Forests, we found that the spatial distribution of the PF proportion is mainly
controlled by the saturated hydraulic conductivity and residual soil moisture, which cannot be identified by
conventional correlation analysis methods. With these soil properties, the spatial distribution of the PF pro-
portion can be estimated with reasonable performance. Using the Classification and Regression Trees method, we
identified the temporal occurrence pattern of the PF for different vegetation types and all observation stations.
Results indicate that the dominant factors controlling the temporal occurrence of the PF varied for different
vegetation types. The thresholds at which these factors initiate the PF also varied. Finally, we found that the PF
occurs particularly under wet conditions (except for hydrophobic soils), under denser vegetation, and under
conditions of high rainfall amount and intensity, regardless of vegetation type. Our study confirms that both site
factors (e.g., soil properties and vegetation) and temporal factors (e.g., initial soil moisture and rainfall char-
acteristics) control the occurrence of the PF in mountainous regions such as the Qilian Mountains and that the
Classification and Regression Trees has great potential to study the temporal occurrence of the PF.
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1. Introduction highly dependent on deep soil moisture and groundwater (Loheide and

Booth, 2011; Orellana et al., 2012; Yang et al., 2022). And the PF helps

Preferential flow (PF) refers to the phenomenon whereby a fluid
bypasses most of the matrix and chooses a preferred path to pass through
a porous medium at a faster rate (Flury et al., 1994; Lin, 2010; Guo and
Lin, 2018). Due to its relatively fast transport rate (relative to piston
flow), it has an important effect on the distribution of water in the soil
(Ritsema and Dekker, 1994), root uptake (Schwarzel et al., 2009), and
groundwater recharge (Ireson and Butler, 2011). Especially in arid and
semi-arid areas, where precipitation is scarce and potential evapo-
transpiration is intense (Cao et al., 2011), the growth of vegetation is

to transfer more water to deeper soils (Gazis and Feng, 2004), which is
used for groundwater recharge and vegetation consumption. Despite the
increasing attention and research on this topic, its complex mechanisms
hinder further progress in understanding and modeling the PF (Guo and
Lin, 2018).

Previous studies have shown that the occurrence of PF is controlled
by temporal and spatial factors (Guo and Lin, 2018). The spatial factors
controlling the occurrence of PF mainly include soil properties, topog-
raphy, and vegetation (Guo and Lin, 2018; Demand et al., 2019; Tang
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et al., 2020). However, the main spatial factors controlling the occur-
rence of PF vary in different regions and scales (Liu and Lin, 2015;
Wiekenkamp et al., 2016; Demand et al., 2019), and even the direction
of influence of some soil properties on the PF varied in different regions
(Koestel and Jorda, 2014; Larsbo et al., 2014, 2016). Wiekenkamp et al.
(2016) found that the spatial occurrence of the PF could not be
explained by watershed-scale topographic or soil-specific controls, and
there was no significant relationship between the proportion of the PF
occurrence and spatial factors. However, some other studies found that
soil texture, topography, and land cover significantly influenced the
occurrence of PF (Demand et al., 2019; Tang et al., 2020). Liu and Lin
(2015) found that the control of topography on the PF occurrence was
amplified when the scale was expanded from hillslope to watershed
scale. In addition, some soil properties related to soil porosity (e.g., soil
bulk density, and saturated hydraulic conductivity (Kg)) have a complex
effect on the PF. Intuitively, higher soil porosity enhances the PF since
macropores provide an important pathway for the PF (Mossadeghi-
Bjorklund et al., 2016), but high soil porosity implies a larger surface
area between the pores and the matrix, which is detrimental to the
occurrence of the PF (Jarvis, 2007; Larsbo et al., 2016). These inter-
acting spatial factors have different sensitivities and directions of in-
fluence on the occurrence of PF (Nimmo, 2020).

Temporal factors controlling the occurrence of PF include rainfall
characteristics and initial soil moisture (SMj,) (Wiekenkamp et al.,
2016; Guo and Lin, 2018; Demand et al., 2019). Wet soils, high rainfall
amounts, and intensity are generally considered conditions conducive to
the occurrence of PF (Liu and Lin, 2015; Wiekenkamp et al., 2016; De-
mand et al., 2019). However, the control of temporal factors on PF
occurrence is also complex. Liu and Lin (2015) found that the occur-
rence of the PF requires rainfall to be above a threshold on the valley
floor and swales, but the PF can occur directly on hilltops. Similar
rainfall thresholds were found by Wiekenkamp et al. (2016). In addition,
the influence of SMy,; on the PF also varies across different study areas.
In hydrophobic soils, dry soil favors the occurrence of PF, but PF in other
areas is positively correlated with SMy,; (Guo and Lin, 2018; Demand
et al., 2019; Tang et al., 2020).

Current models of the PF lag in empirical understanding due to the
complexity of the PF control factors and the specificity of control effects
(Jarvis et al., 2016; Guo and Lin, 2018). Moreover, current research on
the PF (identification of the PF using soil moisture observation) mainly
focused on humid mountains or hills (e.g., Graham and Lin, 2011; Liu
and Lin, 2015; Wiekenkamp et al., 2016; Demand et al., 2019; Guo et al.,
2019; Tang et al., 2020). Few studies have investigated the occurrence
and control of PF in cold, mountainous areas (Li et al., 2013; Hu et al.,
2016). It is important to explore mechanisms for the control and
occurrence of the PF in different environments to improve the under-
standing of the PF and to construct predictive models. In addition, due to
the interaction of control factors in the natural environment and the
relationship between them and the PF is highly nonlinear (Liu and Lin,
2015; Guo and Lin, 2018), and it is very difficult for traditional statis-
tical methods to deal with this complex issue. In the past decades,
Classification and Regression Trees (CART) and Random Forests (RF)
have been widely used in hydrology-related research due to their
powerful ability to handle complex nonlinear problems, such as water
quality analysis (Li et al., 2019), flood prediction (Choubin et al., 2019),
and determination of relationships between different soil properties
(pedotransfer functions) (Koestel and Jorda, 2014; Lai et al., 2022a;
Palladino et al., 2022). The CART provides a conceptual framework for
automatic model selection that is not only easy to interpret, and
monotonic changes in explanatory variables do not affect the model
structure (Genuer and Poggi, 2020). The RF is suitable for dealing with
high-dimensional cases like PF occurrences that have complex control
factors (the number of variables is much greater than the number of
observations) (Biau, 2012; Genuer and Poggi, 2020).

Our previous preliminary experiment explored the occurrence of PF
under the typical land covers in mountain areas (Kang et al., 2022). We
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were able to identify soil properties, vegetation, and rainfall to affect the
occurrence of PF. However, due to the limitations of the research
method, the following questions remain unanswered: 1) What are the
spatial and temporal patterns of PF occurrences at a large scale? 2) Can
we develop a model to predict the spatial pattern of PF occurrences in
large-scale mountainous areas? 3) Can we identify the mechanisms that
trigger the occurrence of the PF, e.g., under what precedent soil condi-
tions and rainfall does the PF occur (the temporal patterns of the PF
occurrence)? This study is the first to try to find answers to the above
questions based on a large-scale, long-term in-situ soil moisture obser-
vation network in high and cold mountainous areas using the latest
machine learning techniques.

2. Data and methods
2.1. Study area

This study was conducted in the upper reaches of the Heihe River
Basin, the second-largest inland river watershed (or terminal lake) in
Northwest China (Cheng et al., 2014). It is located in the Qilian Moun-
tains (9729°-10132°E, 3743°-3939°N) on the northern margin of the
Qinghai-Tibet Plateau and has an area of over 27 x 103 km? (Fig. 1). The
study area is in elevation from 1700 to 5600 m above sea level. The
average annual temperature ranges from —3 to 7 °C and the annual
precipitation ranges from 200 to 700 mm, with most of the rainfall
occurring in the summer (65% of total rainfall between June and
August) (Geng et al., 2014; Zhang et al., 2016), and the precipitation
shows a decreasing trend from the eastern region to the western region
(Geng et al., 2017). Due to the strong vertical differences in temperature
and precipitation, the soils and vegetation show strong spatial hetero-
geneity and vertical zonation in the study area. The landscapes include
glaciers, cold deserts, alpine meadows, shrub meadows, forests, grass-
land, and desert grassland from high to low elevation (Lu et al., 2017).
The main vegetation consists of forests, shrubs, meadows, grasslands,
and sparse vegetation (Tian et al., 2017). Under the influence of zonal
differences in vegetation and temperature, the main soil types (FAO
World Reference Base (WRB)) in the west are Phaeozem and Podzol,
while Mountain grassland soil, Chernozem and Leptosol soils predomi-
nate in the southeast. The main soil textures in the area include silt loam,
sandy loam, and silt (USDA classification), and the loam and sandy loam
soils are mainly located in the upper mountainous areas, while the silt
soils are mainly located in the upper river valleys (Lu et al., 2017).

2.2. Data

2.2.1. Soil moisture network

In this study, we analyzed soil moisture measured with 30 min in-
tervals from 2014 to 2019 at 32 stations established in the upper reaches
of the Heihe River Basin (Fig. 1). These stations cover different soil,
vegetation, and elevation zones of the study area (Zhang et al., 2017a;
Tian et al., 2019). Soil moisture and temperature sensors (5TE sensors,
Decagon Devices Inc., Pullman, USA) were installed at each station at
depths of 5, 15, 25, 40, and 60 cm. Soil samples were also collected at
each depth and used to analyze the soil properties (including bulk
density, soil porosity, Kg, soil organic content (SOC), soil-water char-
acteristic curve (n, a, saturated soil moisture (SM;), and residual soil
moisture (SM,) are the parameters of the soil-water characteristic curves
(van Genuchten model) (van Genuchten, 1980)), and soil texture), see
Tian et al. (2017) for more details. Tian et al. (2023) demonstrated the
spatial distribution characteristics of major soil properties in the study
area. The clay shows a decreasing trend from eastern to western (similar
to the changes in rainfall and vegetation), while the bulk density in-
creases from eastern to western. The Ks, n, SMs, SM,, silt, and sand are
higher in the central region than in the west and east, while the a shows
an opposite variation, with the central region lower than the west and
east.
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Fig. 1. Location of the study area and the distribution of the soil moisture stations. HCG and MCG represent high-coverage grassland and medium-coverage

grassland, respectively.

In addition, we calculated the field capacity, wilting point, effective
porosity, and total porosity. The field capacity and wilting point are the
soil moisture at soil water pressure potential of —330 kPa and —1500
kPa, respectively (can be calculated from soil-water characteristic
curves). The effective porosity is the difference between the total
porosity and field capacity (Rawls et al., 1998), while the total porosity
is calculated using the bulk density (Hao et al., 2008).

BD
TP=1-— 1
D 1

where BD is the bulk density; PD is the soil particle density, generally
taken as the average value of 2.65 g/cm®.

To avoid the impact of data quality on subsequent analyses, checks of
data credibility and consistency over time were performed according to
the data quality control methods (Dorigo et al., 2013; Wiekenkamp
etal., 2016): 1) excluding soil moisture data during the seasonal freezing
periods based on soil temperature and soil moisture dynamics during the
freeze-thaw cycles (Dorigo et al., 2013; Yang et al., 2017); 2) removing
outliers (e.g., values outside the 1-90 vol% range (Wiekenkamp et al.,
2016) and unreasonable fluctuations) (Tian et al., 2019); 3) excluding
unreliable data due to instrumentation problems (e.g. insufficient bat-
tery power) by visual data inspection; 4) retaining only the periods when
all five layers of soil moisture meet quality control. The periods in which
soil moisture at each station met the above criteria are shown in Fig. S1.
All stations except the MCG 2 met these criteria for more than 50% of the
time period, and 78% of the stations met these criteria for more than
70% of the time period throughout the study period.

It is worth noting that the sensors of the Rock 1, Rock 2, and Rock 3
(Fig. 1) were installed in gravel, which might make the measured soil
moisture inaccurate. In addition, it was not possible to determine the soil
properties at these stations due to the inability to sample with ring
knives (Zhao et al., 2020), so these three stations were excluded from the
subsequent analysis.

2.2.2. Rainfall and normalized difference vegetation index (NDVI)

We did not deploy ground-based meteorological observation stations
for rainfall observations at these locations due to budget constraints.
Therefore, to analyze the impact of rainfall on the PF occurrence, we

extracted rainfall data from 2014 to 2018 for these stations from the
widely-used reanalysis dataset (China Meteorological Forcing Dataset,
CMFD) (time resolution is 3 h, spatial resolution is 0.1° x 0.1°) (Yang
etal., 2010; He et al., 2020). CMFD has been widely used in China (Meng
et al., 2021; Zhang et al., 2021), and it is the relatively high-accuracy
rainfall dataset in the Qilian Mountains (Lai et al., 2022b). Using the
CMFD, we calculated the average rainfall (Pp.qn) for each station for the
annual growing season (from May to October each year).

We also extracted the NDVI during the growing season from 2014 to
2019 from the surface vegetation index data (time resolution is 8 days,
spatial resolution is 30 m x 30 m; MODIS (250 m) and Landsat (30 m)
time series data were fused by the Gap Filling and Savitzky-Golay
method) of the Qinghai-Tibetan Plateau (Cao et al., 2022; Chen et al.,
2021) and used their maximum values as the NDVI of the corresponding
stations. In the classification trees, the NDVI at the corresponding time
of the infiltration event was used as the explanatory variable. Both the
rainfall data and NDVI were from the National Tibetan Plateau Data
Center (https://data.tpdc.ac.cn/en/).

2.3. Hypothetical control mechanisms for the PF

In order to gain a preliminary understanding of the PF in the study
area, we integrated knowledge from some in-situ observation stations
and concepts from the literature to propose possible PF control mecha-
nisms (Liu and Lin, 2015; Wiekenkamp et al., 2016; Guo and Lin, 2018;
Demand et al., 2019; Kang et al., 2022). The main spatially controlling
factors for PF occurrence are soil properties, vegetation, and topo-
graphic features. In particular, the effect of topography on the control of
PF occurrence is more important at the watershed scale. Soil properties
that control the PF occurrence are mainly macropore and hydropho-
bicity, and their related soil properties (e.g., SOC, bulk density, Kg, etc.).
Temporal controls on the PF occurrence are mainly the SM;,; and rainfall
characteristics, and the higher rainfall, the wetter soil (as opposed to
hydrophobic soils), and the more likely the PF will occur.
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2.4. Infiltration event

2.4.1. Determination of the infiltration event

According to the definition of infiltration events by Tian et al. (2019)
and Kang et al. (2022), the starting and ending times of infiltration
events were determined for each station as follows (Fig. 2a): 1) selecting
the time series of continuous increase in soil moisture, defining the time
of the start of the soil moisture increase as the start time of the infil-
tration event (SMj,,) and the time of the end of the soil moisture increase
as the end of the infiltration event (SM,nq); 2) combining infiltration
events that occurred within 6 h into the same event; 3) excluding events
with the soil moisture increase less than 1% (SMeq - SMin less than 1 vol
%) (Saito et al., 2013; Wiekenkamp et al., 2016; Demand et al., 2019).
The identification of infiltration events was performed automatically
using a dedicated Matlab script. The total number of selected infiltration
events for these stations is shown in Fig. S2. In order to characterize the
soil moisture change process for infiltration events, we defined the
following quantitative indexes (Fig. 2a) (Lozano-Parra et al., 2016; Tian
et al., 2019):

The initial soil saturation (Sj,) was calculated by:

SMim - SMmin

Sint = SM,. — SM,, @

where SM,q and SMp,, are the maximum and minimum values of
the recorded soil moisture, respectively.

Initial drying time (DTjy, hour):

DT, = Startingtime; — Endingtime;_, 3

where j is the serial number of the infiltration event.
Maximum variation or slope of the soil moisture wetting curve (Spax)
(vol. %/hour) (Lozano-Parra et al., 2016):

SM, — SM,
Spar = Max (%) x 2 (€))

where SM; is the soil moisture value in the time t, and At is the
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variation of the time in the measurement interval, which is 30 min.
Soil water storage increment (SWS, cm):

_ Endingtime J
SWS = dl X Zt:SmningrimL’ASMt’l x 001 (5)
with
. ASM?,, ASM, > 0
ASMI, — 4 208 6)
' 0, ASM!, <0

where ASM/, =M, — M,; ASM,; is the change of soil moisture for

t+Atl
the jth infiltration event in the [ layer (vol. %); ASM[_jl is multiplied by
0.01 to convert its units to cm®/cm®; d; is the thickness of the I™" layer of
soil.

2.4.2. Event classification

These events meeting the described quality criteria can be classified
into three categories based on the starting time of the infiltration event
at two adjacent layers (Liu and Lin, 2015; Wiekenkamp et al., 2016;
Demand et al., 2019):

1. Not classifiable (NC): Events where the upper soil moisture (5 cm)
responds (SMenq - SMie > 1 vol%) but the lower soil moisture does not
(SMeng - SMijp less than 1 vol%) (Demand et al., 2019) (e.g., the third
layer of soil moisture responds but the fourth layer of soil moisture does
not respond, in Fig. 2b);

II. PF: Events where at least one depth sensor detects an out-of-
sequence soil moisture response or both layers respond simultaneously
(e.g., the third soil layer shows a soil moisture response before the
second layer, in Fig. 2b);

III. Sequential flow (SF): Events followed the expected sequence of
soil moisture responses with depth (e.g., the second soil layer shows a
soil moisture response before the third layer).

According to the above principles, we can use the soil moisture of
two adjacent layers to detect whether PF was detected between them.

a) Ending time Ending time—"
e e e e e e e e e m e mmm — ST
16 : L
N Starting time
I
Starting time ] '
~ I
S : !
S : !
> 1
Py SM 1 SM ' :
O .
E g int SI\/II;+ (HAL ; v
‘g 35 4 b) Layer 1 Layer 2 Layer 3 Layer 4 Layer 5  Sequential flow
=
= 30
7]
Preferential flow
= Layer 3 responded first
20 —
15 - '\ Layer 4 not classifiable
I
. ¥
10 i R I Sea
g P e HE TI ayer 2': DRI Layer 3
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Fig. 2. Example of determining infiltration event and schematic diagram of variables SMen4, SMins, Smax, and DTy, (@), and schematic diagram of the PF, sequential

flow (SF), and not classifiable (NC) events (b).
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We can classify four types of response scenarios (Layer 1-2, Layer 2-3,
Layer 3-4, and Layer 4-5) (Kang et al., 2022).

In addition, besides the event classification for the adjacent layers,
we defined the event classification for the whole soil profile using the
following rules:

L. NC: only the first layer (5 cm) of soil moisture showed a response;

II. PF: at least one soil layer was detected with an out-of-sequence
response;

III. SF: sequential response at all soil layers.

The PF proportion was calculated from the ratio of PF events to total
infiltration events (total number of infiltration events in the first soil
layer (5 cm)). In the subsequent analysis, except for the special
description of the PF proportion of the different layers, all other PF
proportions refer to the PF proportions of the profiles.

The relative proportion of PF in each layer is the ratio of the PF
events detected in that layer to the number of PF events in the entire
profile. For example, the PF relative proportion of soil Layer 2-3 can be
calculated by:

Nrria-s

PFips = % 100 @

PF profile

where Npg, 12_3 is the number of PF events detected between layer 2 (15
cm) and layer 3 (25 cm); Npr, profite is the number of PF events detected
for the entire profile.

2.5. Methods of analysis

2.5.1. Classification and regression trees

Classification and Regression Trees (CART) refers to a statistical
method for constructing tree predictors (also called decision trees) for
both regression and classification problems (Breiman et al., 1984).
CART is an upside-down tree (the root is at the top). The leaves of the
tree are nodes without descendants, and the other nodes of the tree are
non-terminal nodes. Also, each non-terminal node has two child nodes;
therefore, the tree is a binary tree. Nonterminal nodes distinguish be-
tween two child nodes with a judgment condition, marking the leaves
with a class label or the value of a response variable. Building a CART is
a two-step process. Firstly, a maximal tree is constructed using recursive
binary splitting, and the second step, called pruning, builds a sequence
of optimal subtrees pruned from the maximal tree sufficiently, using the
complexity parameter (CP) (Rothwell et al., 2008; Genuer and Poggi,
2020). The “rpart” package (Therneau and Atkinson, 2018) and the
“rpart.plot” package (Milborrow, 2018) in R were used to construct the
classification tree in this study.

In order to determine the occurrence pattern of the PF, we con-
structed classification trees using vegetation (NDVI), previous soil con-
ditions (SMj,; and DTy,), and water input characteristics (rainfall
amount and intensity) as explanatory variables, and the type of infil-
tration events (the PF or Non-preferential flow (NPF, including NC and
SF)) as the response variable. Given the absence of in situ rainfall ob-
servations in the soil moisture network, we used surface soil moisture (5
cm) dynamics (SWS and Sy,q) instead of rainfall characteristics (rainfall
amount and intensity) (Zhu et al., 2014; Glaser et al., 2019). We con-
structed classification trees (maximal tree) with events for each of the
three typical vegetation stations (since there were few PF events at the
bare land and meadow, only three vegetation types, forest, high cover
grassland (HCG), and medium cover grassland (MCG), were selected)
and for all the stations (excluding Rock stations) (Table 1). In order to
test the reliability of the classification tree, we randomly selected 2/3 of
the infiltration events to construct the classification tree and used the
remaining events to verify the classification tree. The number of infil-
tration events for different vegetation types and all stations is shown in
Table 1. The error calculation formula for the classification tree is as
follows:
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Table 1
The stations correspond to different vegetation types and the number of infil-
tration events in the training and validation sets.

LUC Stations Number of infiltration
events
Training ~ Validation
Forest™ Shrub 1, Shrub 3, Forest 1, Forest 2, Forest 3 228 113
HCG HCG 1, HCG 2, HCG 3, HCG 4, HCG 5, HCG 6, 511 255
HCG 7, HCG 8
MCG MCG 1, MCG 2, MCG 3, MCG 4, MCG 5, MCG 6, 432 215
MCG 7, MCG 8
ALL Excluding Rock 1, 2 and 3 1681 839

Note: * In order to have enough events to construct a representative classifica-
tion tree, we merged the forest and shrub stations. Shrub 2 was not added to the
subsequent analysis because the temporal factor of the station had little influ-
ence on whether the PF occurred.

1 n
err = EZ[:I le%T(X,) (8)

where n is the number of infiltration events; Y is the response variable
(PF or NPF); T is the constructed classification tree, X is the prediction
variable, and T(X) denotes the type of event predicted by the classifi-
cation tree.

Pruning is the second step of the CART algorithm. Pruning is a model
selection process with the idea of finding the best tree between two
extremes: satisfying the allowed prediction error while minimizing the
complexity (i.e., the number of nodes) (Genuer and Poggi, 2020). The
subsequent analysis is based on the pruned tree.

Once the tree is given, it is easy to use it to predict the type of
infiltration event. Simply start at the root and determine in turn whether
the explanatory variables meet the conditions of the nonterminal node,
and if so, go to the left node, and if not, go to the right (Genuer and
Poggi, 2020). By sequential judgments, the unique path from the root to
the leaves is obtained, and the type of infiltration event (i.e., PF or NPF)
can be determined.

2.5.2. Random Forest

Random Forest (RF) is a collection of un-pruned CART trees. Since
individual trees are randomly perturbed, the forest benefits from a more
extensive exploration of the space of all possible tree predictors, which
always results in better predictive performance (Therneau and Atkinson,
2018). The importance calculation and the selection of variables in this
study were implemented through the “VSURF” package in R (Genuer
et al., 2015; Genuer and Poggi, 2020). The steps are as follows:

I. Ranking and preliminary elimination. Ranking the variables by
decreasing importance, and eliminating the variables with low
importance.

II. Selecting variables for interpretation. Starting with the model
with only the most important variables and ending with the model
involving all the previously selected important variables, the average of
the Out-Of-Bag error for these models is calculated, and finally, the
model variables that lead to the lowest Out-Of-Bag error are selected.

III. Selecting variables for prediction. From the variables selected for
interpretation, a sequence of models is constructed by sequentially
introducing the variables in increasing order of importance and itera-
tively testing them. The variables of the last model are finally selected.

The Out-Of-Bag error (OOB error) and importance of variables (VI)
were calculated as follows:

I ,
OOBerror = ;Zizl (Y, —Y) 9)

k=1

V(X)) = %}Z" (OOEe;mri ~ 00Berror ) a0

where n is the number of samples; Y is the response variable; Y is the
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corresponding predicted value; X is the explanatory variables; g is the
number of trees constructed; OOBerror, is the OOB error of trees k;

OOBerror’,; is the error of the trees k after perturbation of X’ (Randomly
permute the values of variable X/).

2.5.3. Regression and statistical analysis

The RF was used to determine the main control factors of the PF, but
the exact relationship between these main control factors and the pro-
portion of the PF occurrence is not determined by the method because
the RF is a non-parametric method (Gao et al., 2018). Cftool, an appli-
cation in MATLAB (R2022a, The MathWorks), was used to establish the
empirical formula for predicting PF in this study. We used the coefficient
of determination (RZ), adjusted coefficient of determination (Adjusted
Rz), and root mean square error (RMSE) to assess the predictive power of
the empirical formula.

<> T\ 2
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where Y is the means of measured values.
3. Results
3.1. Variation of PF proportion with depth

Fig. 3 shows the relative proportions of PF detected at different
depths for the 32 soil moisture stations. The relative proportion of
detected PF events gradually decreases with increasing depth, but at
Layer 4-5, median of the PF relative proportions is higher than at Layer
3-4. The SWS proportions of PF events (Because it is not possible to
distinguish between the amount of water transported by SF and PF, the
SWS of PF events here is the result of the combined effect of SF and PF.)
are also calculated (Fig. 4a), and their distribution (median value) at
different depths is similar to the distribution of the relative proportions
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Fig. 3. The relative proportions of PF were detected at different soil depths.
The dots and horizontal lines in the plot indicate the median of the relative
proportions, the boxes indicate the 25-75% range, and the vertical lines indi-
cate the 5th and 95th quartiles.
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of PF and is also larger for Layer 4-5. For individual events, the mean
SWS (SWSpean) of the detected PF events is greater than the SF events,
and the SWSeqn in deep soils (Layer 3—4 and Layer 4-5) is also larger
than in shallow soils (Layer 1-2 and Layer 2-3) (Fig. 4b). In deep soils,
the water transport of the PF events is much larger than that of the SF
event, while in shallow soils, they are close to each other.

We also analyzed in detail the relative proportions of PF in different
soil horizons at all stations (Fig. 5). The results showed that the distri-
bution characteristics of PF in the soil horizons of different vegetation
types were different. At Barren, PF was mainly concentrated above the
second soil layer (15 cm) (Layer 1-2); at MCG, PF was mainly concen-
trated above the third soil layer (25 cm) (Layer 1-2 and 2-3); at HCG, PF
was concentrated above the fourth soil layer (40 cm) (Layer 1-2, 2-3,
and 3-4); at Meadow, Shrub, and Forest, PF was concentrated primarily
above the fifth soil layer (60 cm) (Layer 1-2, 2-3, 3-4, and 4-5) (Fig. 5).
These distribution characteristics correlate with the distribution of roots
at each station. As vegetation cover increased and roots penetrated
deeper into the soil, the thickness of soil where PF was detected
increased accordingly.

3.2. Differences in the PF proportion between stations

Fig. 6 shows the proportion of PF occurrence at different stations. In
general, the proportion of the PF gradually increases from Barren land to
Meadow and grassland (MCG and HCG), and then to Shrub and Forest.
However, at some stations, the proportion of the PF is much higher than
at other stations with the same vegetation types. This difference implies
that the occurrence of the PF is not only controlled by vegetation type
but also influenced by other factors. The proportions of the PF, SF, and
NC events at these stations are shown in Fig. 7. Most of the stations are
dominated by the SF events (65.6%, 21 of the 32 stations) and the NC
events (21.9%, 7 of the 32 stations), with a small proportion of the PF
events (12.5 %, 4 of the 32 stations). Nonetheless, at some stations in the
eastern and central parts of the study area, the proportion of PF events is
higher.

3.3. The spatial control of PF occurrence

In order to explore the factors controlling the occurrence of the PF,
we analyzed the correlations of 18 spatial attributes, such as soil texture,
soil hydraulic properties, topography, and vegetation, with the PF pro-
portions. In general, the correlations are low, and significant correla-
tions are only found between the SOC and NDVI, and PF proportions (P
less than 0.05). The proportion of the PF shows a slight increase trend
with increasing the SOC (Pearson R = 0.41), and with increasing the
NDVI (Pearson R = 0.38). The relationship between the PF proportion
and other factors, such as soil properties and topography, is not clear (P
greater than 0.05). Obviously, the relationships between these spatial
factors and the PF proportions are not simply linear, and their re-
lationships need to be further analyzed using other statistical methods.

3.4. The spatial estimation of the PF occurrence at the station-scale

We further analyzed the relationship between the control factors and
the PF to develop empirical relationships, which may be useful for hy-
drological simulations. Given the complexity and intercorrelation of the
PF control factors, we explored the relative influence of these control
factors on the PF based on the VSURF. The result shows that the
importance of variables of Kg, SM;, SOC, a, Clay, and NDVI is higher than
the other factors (Fig. 8), while Ks and SM; are the final chosen inter-
pretation and prediction variables. We used multiple nonlinear regres-
sion to establish equations for predicting the PF proportions using the
Ks, SM;, SOC, and NDVI (there are significant correlations between the
SOC and NDVI and the proportion of the PF occurrence) as prediction
variables, respectively (Table 3). We found that the prediction equation
built using the SM, has the best prediction performance (R? = 0.43%)
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Fig. 4. The proportion of cumulative soil water storage increment (SWS) of PF events to cumulative SWS of all events (a); Mean SWS (SWSean) for individual PF and
SF events (b). The pentagram and the horizontal black line in the plot indicate the mean and median, respectively. SWS here is the incremental water storage in the
lower soil layer. For example, the SWS of Layer 1-2 is the incremental water storage in the second soil layer (15 cm). We assumed that any increase in water storage
in the second soil layer is transported from soil water in the first layer to the second soil layer through PF or SF events.
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Fig. 5. Relative proportions of PF for different soil layers at each station. Because no PF events were detected at Barren 1 and 4, MCG 2 and 4, HCG 5, and Meadow 3,

these stations are not shown in the figure.

instead of the prediction equation built by SOC (R? = 0.22%) or NDVI (R?
= 0.15). In addition, the predictive performances of the equations were
established using the Kg and SM,, SOC and NDVI, and the SM, and SOC
(SM, and SOC are the two variables with the best prediction performance
using multiple nonlinear regression) as prediction variables, respec-
tively (Table 3). We found that the equations built by the NDVI and SOC

have the worst prediction performance R? = 0.37), while the other two
equations had approximately similar performances R? = 0.49* and
0.52%). Obviously, the Kg and SM, play an important role in the pre-
diction performance despite no significant correlation being found be-
tween them and the proportion of the PF. This may be because the Kg
and SM; are influenced by other soil properties (such as bulk density,
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Fig. 7. The spatial distribution of annual mean precipitation (2014-2018, CMFD) in
NC at each station.

SOC, and effective porosity) and are indicators that can represent the
overall soil hydraulic characteristics. Since the prediction performance
of the equations built with the Kg and SM, (Adjusted R? = 0.39; RMSE =
11.65%) and with the SM, and SOC (Adjusted R? = 0.39; RMSE =
11.64%) are comparable, we choose the relatively simple equation (Eq.
(14) (R? = 0.49* ; Adjusted R? = 0.39; RMSE = 11.65%) as the final
prediction equation (Fig. S3). There are limitations to this kind of pre-
diction that only uses spatial factors such as soil properties because
spatial factors only provide flow paths for the occurrence of the PF, and
temporal factors controlling the occurrence of the PF will be analyzed in

the study area and soil moisture stations, and the proportions of the PF, SF, and

Section 3.5.

PF =421 x K, —24.59 x K, x SM, + 7734 x SM,> —956.5 x SM, +28.31
14

3.5. Temporal control of the PF occurrence at the event scale

Table 4 shows the importance of variables of each explanatory var-
iable (tree before pruning) for different vegetation types. S is the most
important factor controlling whether the PF occurs in Forest, MCG, and
all stations, while Spqy is the most important factor in HCG. However,
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Fig. 8. Importance of variables (VI) ranked in descending order for the PF proportion. Due to missing soil properties data for some stations, only 25 stations were
used for importance ranking. The FC, WP, Bulk, and EP refer to field capacity, wilting point, bulk density, and effective porosity, respectively.

Table 2

Pearson and Spearman correlation coefficients between spatial factors (soil properties, vegetation, topography, elevation, precipitation) and the PF proportions. (R =

correlation coefficient, significance: * = 0.05).

Sand (%) Clay (%) Silt (%) Ks (m/d) a n SM (m®/ SM, (m®/ Bulk Density (g/
m?) m?) cm®)
Pearson R -0.15 0.16 0.14 0.11 0.19 —0.07 0.11 0.06 —0.23
Spearman 0.01 0.34 —0.01 0.30 0.33 0.01 0.11 0.06 —0.23
R
SOC (g/100 Effective Field Capacity (m®/ Wilting Point (m®3/ Elevation Slope Aspect (°) NDVI Prnean (mm)
2 Porosity m?) m®) (m) ©)
Pearson R 0.41* 0.25 —0.03 0.12 0.28 —0.06 —0.03 0.38* 0.24
Spearman 0.36 0.24 —0.13 0.00 0.29 0.04 —0.09 0.22 0.17
R
Table 3 Table 4

Statistical parameters of equations obtained by multiple nonlinear regression.
Only the spatial attributes and the PF proportions of the 25 stations used in
VSURF were used to build these equations.

Variables Regression equation** R? Adjusted RMSE
R (%)
Ks ~1.357 x K3 4+ 10.73 x Ks + 0.16 0.08 14.28
0.4368
SM, 8215 x SM,>-1064 x SM, +36.94  0.43*  0.37 11.80
NDVI —21.36 x NDVI? + 46.1 x NDVI- 0.15 0.07 14.38
5.518
soc 0.6822 x SOC>-3.174 x SOC + 0.22*  0.15 13.78
9.78
Ksand SM,  4.214 x Kg-24.59 x Kg x SM, + 0.49*  0.39 11.65
7734 x SM,*-956.5 x SM, + 28.31
NDVI and —77.81 x NDVI? + 81.9 x NDVI 0.36 0.20 13.36
socC +6.205 x NDVI x SOC + 0.6968
x SOC%7.552 x SOC-6.328
SM, and 6601 x SM,2-778.5 x SM,-3.961 0.52* 0.39 11.64
soc x SM;, x SOC + 0.6038 x SOC>-

3.053 x SOC + 26.81

Note: * The multiple regression equation was significant. ** Only one form of the
equation with the best simulation results was chosen here.

the factors of the lowest importance of variables vary among vegetation
types, in Forest and all stations are DT, HCG is NDVI, and MCG is SWS
(Table 4).

Fig. S4-6 shows the results of classification trees after pruning for the
three vegetation types. All four trees show good classification results
with the validation errors and training errors less than 0.15 (except the
validation error of Forest is 0.204) (Table 5). Therefore, we can deter-
mine the occurrence pattern of the PF in different vegetation types by
going through the classification trees.

1) In Forest, the PF occurs when the NDVI is above 0.59, the rainfall

Importance of variables of input variables for stations with different vegetation
and all stations.

LUC Importance of explanatory variables*

Sint SWS NDVI Smax DTine
Forest 33.343 28.386 18.118 16.53 12.276
HCG 23.632 30.305 19.118 34.983 23.659
MCG 26.403 14.445 16.286 20.375 19.390
All 112.83 87.359 77.274 84.267 75.948

Note: * The indicators of each event are calculated using the surface soil mois-
ture (5 cm). Bold numbers represent the variable importance values corre-
sponding to the variables with the highest importance in that vegetation type.

Table 5
The normalized complexity parameter, number of splits, and training and vali-
dation errors of the different decision trees for different land covers.

LuC Complexity Number of Training Validation
Parameter Splits Errors Errors

Forest  0.029 6 0.129 0.204

HCG 0.027 5 0.077 0.106

MCG 0.024 6 0.074 0.114

All 0.010 7 0.105 0.111

exceeds a certain threshold (corresponding to the SWS greater than 0.31
cm), and the Sy is greater than 0.57. In addition, when the Sy is less
than 0.57, but rainfall intensity exceeds a certain threshold value (cor-
responding to the Sy,qx greater than 1.2 vol. %/h), and the S, is greater
than 0.15, there is also a high susceptibility to the PF (Fig. S4);

2) In HCG, the PF occurs more frequently when rainfall intensity
exceeds a certain threshold value (corresponding to the Sjq. greater
than 9 vol. %/h), and the S, is greater than 0.23 (Fig. S5);



W. Kang et al.

3) In MCG, the PF occurs when the S;, is greater than 0.47, the
rainfall amount is greater than a certain threshold value (corresponding
to the SWS greater than 0.21 cm), the DTj,, is less than 113 h, the NDVI is
greater than 0.23, and rainfall intensity is less than a certain threshold
value (corresponding to the Sy,qx less than 1.5 vol. %/h). In addition, the
PF is more likely to occur when rainfall intensity exceeds a certain
threshold value (corresponding to the S;q. greater than 1.5 vol. %/h),
but rainfall intensity exceeds a certain threshold value (corresponding to
a value of S;q. greater than 2.2 vol. %/h) (Fig. S6).

In summary, we found various thresholds of these factors for
different vegetation types to control the PF occurrences (Table 6), for
example, the threshold for SWS in Forest is 0.31 cm but 0.21 ¢cm in MCG;
the threshold for Si;; is 0.57 in Forest, 0.23 in HCG, and 0.47 in MCG.
However, in all of these vegetation types, the PF is generally more likely
to occur when the soil is wetter (larger S;), and the Spq and SWS are
larger. In addition, the PF is also more likely to occur in Forest with
better vegetation (larger NDVI). But the PF events also occur at some of
the nodes with smaller Si;; (e.g., the 6th terminal nodes of Forest
(Fig. S4)).

Finally, a classification tree was constructed using all stations (except
Rock) in order to identify patterns of the PF occurrence for the entire
study area (Fig. 9). The PF is more likely to occur under the following
three conditions (Fig. 9): 1) Spayx greater than 11 vol. %/h, NDVI greater
than 0.22 and Sy greater than 21 vol. %/h; 2) Spax less than 21 vol.
%/h, but SWS less than 1.7 cm, S, less than 0.57 and DTjy, greater than
74 h; 3) DTiy less than 74 h and Sy greater than 16 vol. %/h. Obvi-
ously, this classification tree identifies the most complex conditions for
the occurrence of the PF, as it includes all infiltration events. However,
the conditions for the occurrence of PF vary among the in-situ obser-
vation stations.

4. Discussion
4.1. The significance of the PF for ecohydrology

Numerous studies have shown that PF can enhance the deeper and
faster infiltration of rainfall into soils (Guo et al., 2018; Worthington,
2019). We came to a similar conclusion that although PF events account
for only a small fraction (less than 20%) of the infiltration events at most
of the stations (about 75%) (Fig. 7), they play a crucial role in the
recharge of soil moisture in the study area. Our results suggested that the
PF events detected at depth can provide more water to the soil,
compared to SF events (Fig. 4b). Some previous studies have shown that
evaporation affects shallow soil moisture, while soil moisture that in-
filtrates through the PF pathway to the deeper layers can be retained for
a longer period to provide water for plant growth (Gazis and Feng, 2004;
Jarvis et al., 2016; Guo et al., 2019). This finding reinforces the signif-
icance of PF on soil water dynamics and water resources for plant
growth, particularly in arid areas.

4.2. The spatial distribution of PF

We find that the relative proportion of PF detected decreases with
depth but increases at Layer 4-5 (Fig. 3). As the soil depth increases, the
root and macroporosity tends to decrease. This can lead to a decrease in
the number of PF events detected (Liu et al., 2007; Wang et al., 2020). In
contrast, the increased number of PF events at Layer 4-5 may be due to

Table 6
The threshold for the temporal factors for initiating the PF.
Sine SWS (cm) NDVI Smax (vol. %/h) DT (h)
Forest 0.15 0.31 0.59 1.2 -
HCG 0.23 - - 9 -
MCG 0.47 0.21 0.23 2.2 113

Note: - The pruned classification tree does not have this variable.
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the high gravel content in the deeper soil layers (Yang et al., 2020). Both
roots and gravels are important factors controlling the occurrence of PF
(Johnson and Lehmann, 2006; Qin et al., 2015; Zhao et al., 2020). The
proportion of PF also varies significantly between stations. The spatial
distribution of PF proportions and annual precipitation (Fig. 7) and
some soil properties (e.g., Clay) (Tian et al., 2023) in the study area are
similar, both gradually increasing from west to east and from north to
south. However, the variability of PF at different depths and different
stations also depends on the control of spatial and temporal factors
discussed below (Guo et al., 2018; Demand et al., 2019).

4.3. The spatial control of PF proportion

The previous study found that the soil properties significantly related
to the proportion of PF occurrence in the study area are the bulk density,
SM;, Kg, and SOC (Kang et al., 2022). However, when upscaling to the
catchment scale, only significant linear relationships remain between
the SOC and PF (Table 2). In addition, a significant relationship was
found between the NDVI and the PF at some stations (Kang et al., 2022)
and the entire catchment scales (Table 2), which implies an important
control of vegetation on the PF occurrence. Interestingly, although no
significant linear relationship was found between the Ks and SM; and the
proportion of the PF occurrence at the catchment scale, they are the
dominant factors controlling the PF occurrence identified using the
VSURF method (Fig. 8) (This is in contrast to our hypothesis, which did
not find the control of topographic factors on the occurrence of PF.). The
results of the multiple nonlinear regression also proved that SM, and Kg
simulated the proportion of the PF occurrence better than SOC and NDVI
(Table 3). This implies that the RF method can find the intrinsic effects of
prediction variables (Koestel and Jorda, 2014; Lai et al., 2022a) on the
response variables that cannot be obtained through traditional methods,
such as significant analysis.

The most important factor controlling the proportion of PF occur-
rence is Kg (Fig. 8). It is worth noting that in the previous study, a
positive correlation between the Ks and the PF occurrence proportion
was found (Kang et al., 2022), but our results show that the relationship
between the PF proportions and Ks is nonlinear (Table 2 and 3). Previous
studies have found that PF is more likely to occur in soils that contain
only a few continuous but poorly interconnected large pores (Jarvis,
2007; Bianchi et al., 2011). This is attributed to the fact that a well-
connected network of small and macropores increases the lateral con-
vection and diffusion of water between pores and soil matrix during
infiltration while decreasing vertical transport (Jarvis, 2007; Koestel
et al.,, 2012). Many soil properties influenced by porosity have this
contradictory effect on the PF, such as the bulk density and Kg (IMossa-
deghi-Bjorklund et al., 2016; Nimmo, 2020). Larsbo et al. (2014) pro-
posed a conceptual model to explain this phenomenon, as pore
connectivity in the soil decreases, the PF intensity initially increases and
then decreases.

We established an empirical relationship (Eq. (14) between the PF
and soil properties (Ks and SM,). This relationship, along with the spatial
distribution of Ks and SM,, was used to characterize the spatial distri-
bution of the proportion of PF occurrence across the study area. In
addition, the equation can also be used to determine the proportion of
PF occurrence in similar regions around the globe, providing a pre-
liminary understanding of the PF characteristics of the region.

Previous studies have also established empirical relationships be-
tween spatial factors and the proportion of PF occurrence, but the main
factors controlling the occurrence of PF varied greatly in different
studies (Liu and Lin, 2015; Gao et al., 2018). The empirical relationships
we established can only provide a limited simulation of the proportion of
the PF occurrence (R? = 0.49*) since only 50-66% of the variability of
the PF is related to spatial factors such as soil properties (van Schaik,
2009). Spatial factors provide the pathway for the occurrence of the PF,
while temporal factors determine whether the PF occurs at each station
(Guo and Lin, 2018).



W. Kang et al.

Geoderma 438 (2023) 116626

0,
Yes IQOA) No
Smax <11 4
5%
1
NDVI <0.22 i
4%
L
Smax <21
53%]
4%
|
SWSS=17 1
3%
1
sint>=0.57 ¢
61%
3%
1
i DT;,, <74
4%
\ 4 A\ 2 \ 4 Y \ 4
g
95% 1% 1% 0% 1% 1% 1% 1%

Fig. 9. Classification tree of NPF/PF for all stations (except Rock) generated by CART. The red and blue columns are the nodes of the tree and represent PF events and
NPF events, respectively. The size of the different colored columns and the number in the column indicate the proportion of the corresponding type of events in that
node. The green number below the node indicates the proportion of observations for that node to the total number of events.

4.4. Temporal control of the PF occurrence

Previous studies have found that rainfall characteristics and SMj,;
together determine whether the PF occurs (Guo and Lin, 2018). How-
ever, the mechanisms controlling the occurrence of PF are complex due
to the interplay of these factors. The present studies mainly focused on
the correlation between the PF and these control factors (e.g., Liu and
Lin, 2015; Wiekenkamp et al., 2016; Demand et al., 2019), and it’s hard
to determine the occurrence pattern of the PF. However, using the CART
we can determine the mechanism of the PF occurrence, i.e., under which
circumstances the PF occurs.

We found that sufficient moisture input (SWS and Sp,q greater than
thresholds) is required for the PF to occur, and the threshold varies
across vegetation types (Table 6). It may imply that the PF is initiated by
different rainfall amounts and intensities in the different vegetation
types, which is similar to the previous findings. Liu and Lin (2015) found
that rainfall amount needs to exceed a threshold for the PF to occur at
valley floors and swales, but the PF can occur directly at hilltops. Wie-
kenkamp et al. (2016) found that the effect of rainfall on PF is governed
by SMi;, especially for rainfall events over 25 mm, where the drier the
soil, the more likely PF is to occur. A similar phenomenon is found in this
study at the Forest, where the probability of PF occurring is high when
SWS is greater than 0.31 cm, but S is less than 0.57 (Figs. S4, 6th
terminal node). In addition, the NDVI is not only related to the pro-
portion of the PF occurrence as a spatial factor (differences in NDVI
between stations) (Table 2) but also as a temporal factor (changes in
vegetation) controlling the occurrence of the PF in Forest (Fig. S4 and
Table 4).

We also constructed the occurrence pattern of the PF for the whole
region using the infiltration events at all stations (Fig. 9). The PF occurs

under conditions in which rainfall intensity and amount exceed certain
thresholds and the initial soil wetting which is similar to previous
studies (Liu and Lin, 2015; Wiekenkamp et al., 2016; Demand et al.,
2019). The specific thresholds for the occurrence of the PF can be ob-
tained using the CART, and although limited by the absence of rainfall
observations, this method appears to have great potential for the
determination of the PF occurrence patterns. In conclusion, spatial and
temporal factors together control the occurrence of PF in the study area.

4.5. Limitations and future considerations

Our previous study has found that vegetation, rainfall, soil proper-
ties, and SMy,; influence the occurrence of PF. Specifically, low bulk
density, low SM;, high Kg, and high SOC favored the occurrence of PF;
low Si; favored the occurrence of the PF in areas with high sand content
(probably due to hydrophobicity), while high S;,; favored the occurrence
of the PF in areas with low sand content (Kang et al., 2022). However,
the model that predicts the spatial pattern of the PF and the mechanism
triggering the temporal occurrence of the PF remains unavailable. In this
study, the occurrence pattern of the PF and the prediction equation of
the proportion of the PF occurrence are determined using the CART, RF,
and multiple nonlinear regression based on the infiltration events at a
large scale using 29 observation stations.

However, the detection of the PF at distinct depths in this study has
some limitations. It should be noted that detecting the PF at a specific
depth does not guarantee that PF is taking place at that depth. Instead,
detecting an out-of-sequence response at a certain layer indicates the
presence of a PF path above a certain layer. For instance, the detection of
PF in Layer 3-4 may be attributed to the existence of a PF path between
Layer 3-4, leading to a synchronized response of soil moisture in both
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layer 3 and 4. However, it is also possible that a PF path exists between
Layer 2-4 or 1-4, which can also lead to the out-of-sequence response at
Layer 3-4. While the change in the relative proportion of PF (Fig. 3) with
depth may not accurately represent the vertical distribution of the PF
path, it does serve as a reference for identifying its vertical variation. As
far as we know, the vertical distribution of macropores can only be
assessed using techniques such as staining experiments or X-ray
computed tomography of soil columns (Anderson et al., 1990; Katuwal
et al., 2015; Zhang et al., 2017b; Zhang et al., 2018). These invasive
methods can only obtain the occurrence pathway of PF at the sampling
moment. Instead, by analyzing the PF detected at varying depths, it is
possible to obtain long-term dynamic characteristics of the pathways in
which the PF occurs. Moreover, this does not impact the assessment of
whether the PF is occurring in the actual profile.

In addition, the data sources in this study have some limitations.
Since no in situ rainfall observation is available, some indicators
calculated from soil moisture dynamics are used instead of the rainfall
characteristics to construct the PF occurrence pattern, which may in-
fluence the computed rainfall thresholds. Previous studies have found a
monotonic relationship between rainfall characteristics and soil mois-
ture dynamics (Zhu et al., 2014, 2021; Yang et al., 2018; Glaser et al.,
2019), and the advantage of the CART approach is that monotonic
changes in the explanatory variables do not affect the structure of the
final PF occurrence pattern (De’ath and Fabricius, 2020; Genuer and
Poggi, 2020). However, it is undeniable that there are variations in the
relationship between rainfall characteristics and soil moisture dynamics
at different stations, and therefore there are large deviations between
the thresholds obtained for PF initiation and the true thresholds. We also
attempted to use the available rainfall datasets, but the current rean-
alysis datasets (e.g., CMFD) are not effective in estimating rainfall in-
tensity in mountainous areas (Lai et al., 2022b), and the estimation error
of rainfall intensity, in particular, is large (RMSE greater than 0.5 mm/
3h, and R? < 0.025) (Fig. S7).

In addition, limited by the harsh mountainous environment, the
measurement interval of soil moisture data was 30 min, which is coarser
for identifying the PF (e.g., Hardie et al., 2010; Liu and Lin, 2015;
Wiekenkamp et al., 2016; Demand et al., 2019), may cause some un-
certainty in the identification of the PF. Finally, due to non-human
factors such as instrument failure caused by animals (yak, rat, etc.),
data gaps exist in the time series of soil moisture available at each station
(Fig. S1). Therefore, the number of infiltration events identified at each
station varies (Fig. S2) (mainly because rainfall varies greatly from
station to station), which may also contribute to some uncertainty.
However, the stations used in this study include the typical soils, vege-
tation, and elevation zones across the high and cold mountainous areas
(2.7 x 10* km?). The soil moisture at these stations was monitored over
6 years (2014-2019), and the missing soil moisture data at most stations
are only a small fraction of the data series (Fig. S1). Previous studies
have concluded that 1 year of continuous monitoring is sufficient to
determine the proportion of PF occurrence, and greater than 3 years is
sufficient to determine the controlling factors for PF (Graham and Lin,
2011; Liu and Lin, 2015). Thus, the uncertainty due to differences in soil
moisture series is small and can be ignored. The large-scale and long-
term soil moisture observations make the recognized patterns and
mechanisms of the PF occurrence more representative of the study area
and robust than the other previous studies (e.g., Liu and Lin, 2015;
Wiekenkamp et al., 2016; Demand et al., 2019). Thus, the datasets used
in this study help to extend the methods and the results to other similar
high and cold mountainous regions.

Results indicate that these methods are significant for determining
the occurrence mechanism of PF. On the one hand, RF can obtain the
intrinsic influence of some factors on the proportion of the PF occur-
rence, which is not available by traditional methods (Koestel and Jorda,
2014) (Fig. 8); on the other hand, the occurrence pattern of the PF
constructed by CART is not available by other existing methods (Fig. S4-
6, Fig. 9 and Table 6). To further enhance the understanding of the PF
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occurrence mechanisms, we need to collect soil moisture datasets from
observation networks in different climates, soils, topography, and
vegetation. We need also to use more accurate rainfall data to construct
the temporal patterns of the PF occurrence. Moreover, since these
methods utilize some common environmental parameters (such as K,
SM,, rainfall characteristics, and SMyy), it is plausible to couple the PF
prediction models and occurrence patterns with hydrological models to
improve the accuracy of hydrological modeling.

5. Conclusion

Our study identified a large number of PF infiltration events in the
high and cold mountainous areas of the Qilian Mountains, based on
profile soil moisture data from a long-term monitoring network. By
combining these long-term observations with the machine learning
methods of RF and CART, we revealed the robust distribution and
spatiotemporal control mechanisms of PF in mountainous areas. The
main findings of our study are as follows:

e The PF varied considerably in the mountainous areas, and both site
factors (e.g., soil properties and vegetation) and dynamic factors (e.
8., SMin: and rainfall characteristics) control the occurrence of the PF
at large-scale mountainous areas.

e Assoil depth increases, the relative proportion of PF events detected

tends to decrease. With increasing vegetation cover, the dominant

soil layer in which PF was detected increased.

Based on the RF, the study identified the Ks and SM; as the main local

factors controlling the spatial distribution of the PF, which can’t be

identified using the conventional methods of correlation analysis.

Furthermore, an equation to predict the spatial distribution of PF

proportion was developed with reasonable accuracy in mountainous

regions.

e Based on the CART, the PF temporal occurrence patterns were
established for different vegetation types and the whole catchment in
the Qilian Mountains, and it was found that the PF is initiated when
the temporal control factors exceed certain thresholds, with SMiy,
rainfall amount, rainfall intensity being the main factors.

Our study provides new insights into the mechanism of the PF by
comprehensively analyzing its spatiotemporal controlling factors, which
can be useful for eco-hydrological studies in large-scale mountainous
areas. Additionally, we demonstrate the great potential of combining in-
situ soil moisture sensor networks with machine learning techniques,
such as the CART and RF, to explore the complex mechanism of the PF.
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