001     1020591
005     20240226075312.0
024 7 _ |a 10.1137/22M1487163
|2 doi
024 7 _ |a 1064-8275
|2 ISSN
024 7 _ |a 0196-5204
|2 ISSN
024 7 _ |a 1095-7197
|2 ISSN
024 7 _ |a 2168-3417
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-00286
|2 datacite_doi
024 7 _ |a WOS:001108755600010
|2 WOS
037 _ _ |a FZJ-2024-00286
082 _ _ |a 510
100 1 _ |a Gander, Martin J.
|0 0000-0001-8450-9223
|b 0
245 _ _ |a A Unified Analysis Framework for Iterative Parallel-in-Time Algorithms
260 _ _ |a Philadelphia, Pa.
|c 2023
|b SIAM
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1704804512_18680
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Parallel-in-time integration has been the focus of intensive research efforts over the past two decades due to the advent of massively parallel computer architectures and the scaling limits of purely spatial parallelization. Various iterative parallel-in-time algorithms have been proposed, like Parareal, PFASST, MGRIT, and Space-Time Multi-Grid (STMG). These methods have been described using different notation, and the convergence estimates that are available are difficult to compare. We describe Parareal, PFASST, MGRIT, and STMG for the Dahlquist model problem using a common notation and give precise convergence estimates using generating functions. This allows us, for the first time, to directly compare their convergence. We prove that all four methods eventually converge superlinearly, and we also compare them numerically. The generating function framework provides further opportunities to explore and analyze existing and new methods.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
536 _ _ |a TIME-X - TIME parallelisation: for eXascale computing and beyond (955701)
|0 G:(EU-Grant)955701
|c 955701
|f H2020-JTI-EuroHPC-2019-1
|x 1
536 _ _ |a Verbundprojekt: TIME-X - Parallelisierung zeitabhängiger Simulationen für das zukünftige Supercomputing (16HPC047)
|0 G:(BMBF)16HPC047
|c 16HPC047
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Lunet, Thibaut
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Ruprecht, Daniel
|0 0000-0003-1904-2473
|b 2
700 1 _ |a Speck, Robert
|0 P:(DE-Juel1)132268
|b 3
|u fzj
773 _ _ |a 10.1137/22M1487163
|g Vol. 45, no. 5, p. A2275 - A2303
|0 PERI:(DE-600)1468391-X
|n 5
|p A2275 - A2303
|t SIAM journal on scientific computing
|v 45
|y 2023
|x 1064-8275
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1020591/files/22m1487163.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1020591/files/22m1487163.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1020591/files/22m1487163.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1020591/files/22m1487163.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1020591/files/22m1487163.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1020591
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)132268
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SIAM J SCI COMPUT : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21