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Abstract. Parallel-in-time integration has been the focus of intensive research efforts over the
past two decades due to the advent of massively parallel computer architectures and the scaling limits
of purely spatial parallelization. Various iterative parallel-in-time algorithms have been proposed,
like PARAREAL, PFASST, MGRIT, and Space-Time Multi-Grid (STMG). These methods have been
described using different notation, and the convergence estimates that are available are difficult to
compare. We describe PARAREAL, PFASST, MGRIT, and STMG for the Dahlquist model problem
using a common notation and give precise convergence estimates using generating functions. This
allows us, for the first time, to directly compare their convergence. We prove that all four methods
eventually converge superlinearly, and we also compare them numerically. The generating function
framework provides further opportunities to explore and analyze existing and new methods.
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1. Introduction. The efficient numerical solution of time-dependent ordinary
and partial differential equations (ODEs/PDEs) has always been an important re-
search subject in computational science and engineering. Nowadays, with high-
performance computing platforms providing more and more processors whose indi-
vidual processing speeds are no longer increasing, the capacity of algorithms to run
concurrently becomes important. As classical parallelization algorithms start to reach
their intrinsic efficiency limits, substantial research efforts have been invested to find
new parallelization approaches that can translate the computing power of modern
many-core high-performance computing architectures into faster simulations.

For time-dependent problems, the idea to parallelize across the time direction
has gained renewed attention in the last two decades.! Various algorithms have been
developed; for overviews see the papers by Gander [18] and Ong and Schroder [42].
Four iterative algorithms have received significant attention, namely PARAREAL
[36] (474 citations since 2001),% the Parallel Full Approzimation Scheme in Space
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and Time (PFASST) [11] (254 citations since 2012), Multi-Grid Reduction in Time
(MGRIT) [16, 14] (287 citations since 2014), and a specific form of Space-Time
Multi-Grid (STMG) [25] (140 citations since 2016). Other algorithms have been
proposed, e.g., the Parallel (or PARAREAL) Implicit Time integration Algorithm
(PITA) [15] (275 citations since 2003), which is very similar to PARAREAL, the
diagonalization technique [39] (63 citations since 2008), Revisionist Integral Deferred
Corrections (RIDC) [6] (114 citations since 2010), PARAEXP [20] (103 citations since
2013), and parallel Rational approzimation of eEXponential Integrators (REXI) [47]
(28 citations since 2018).

PARAREAL, PFASST, MGRIT, and STMG have all been benchmarked for large-
scale problems using large numbers of cores of high-performance computing systems
[33, 35, 38, 49]. They cast the solution process in time as a large linear or nonlinear
system which is solved by iterating on all time steps simultaneously. Since parallel
performance is strongly linked to the rate of convergence, understanding convergence
mechanisms and obtaining reliable error bounds for these iterative parallel-in-time
(PinT) methods is crucial. Individual analyses exist for PARAREAL [2, 21, 26, 44, 50],
MGRIT [8, 32, 48], PFASST [3, 4], and STMG [25]. There are also a few combined
analyses showing equivalences between PARAREAL and MGRIT [14, 22] or connec-
tions between MGRIT and PFASST [40]. However, no systematic comparison of
convergence behavior, let alone efficiencies, between these methods exists.

There are at least three obstacles to comparing these four methods: first, there is
no common formalism or notation to describe them; second, the existing analyses use
very different techniques to obtain convergence bounds; third, the algorithms can be
applied to many different problems in different ways with many tunable parameters,
all of which affect performance [28]. Our main contribution is to address, at least for
the Dahlquist test problem, the first two problems by proposing a common formalism
to rigorously describe PARAREAL, PFASST, MGRIT,? and the Time Multi-Grid
(TMG) component* of STMG using the same notation. Then, we obtain comparable
error bounds for all four methods by using the generating function method (GFM) [34].
GFM has been used to analyze PARAREAL [21] and was used to relate PARAREAL and
MGRIT [22]. However, our use of GFM to derive common convergence bounds across
multiple algorithms is novel, as is the presented unified framework. When coupled
with a predictive model for computational cost, this GFM framework could eventually
be extended to a model to compare parallel performance of different algorithms, but
this is left for future work.

Our manuscript is organized as follows. In section 2, we introduce the GFM frame-
work; in particular, in section 2.1, we give three definitions (time block, block variable,
and block operator) used to build the GFM framework and provide some examples
using classical time integration methods. Section 2.2 contains the central definition
of a block iteration and again examples. In section 2.3, we state the main theoreti-
cal results and error bounds, and the next sections contain how existing algorithms
from the PinT literature can be expressed in the GFM framework: PARAREAL in
section 3, TMG in section 4, and PFASST in section 5. Finally, we compare in sec-
tion 6 all methods using the GFM framework. Conclusions and an outlook are given
in section 7.

3We do not analyze in detail MGRIT with FCF relaxation, only with F relaxation, in which
case the two-level variant is equivalent to PARAREAL. Our framework could, however, be extended
to include FCF relaxation; see Remark 3.1.

4Since we focus only on the time dimension, the spatial component of STMG is left out.
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2. The generating function method. We consider the Dahlquist equation

(2.1) %:)\u, AeC, te(0,7], u(0)=wugeC.

The complex parameter A allows us to emulate problems of parabolic (A < 0), hyper-
bolic (A imaginary), and mixed type.

2.1. Blocks, block variables, and block operators. We decompose the time
interval [0,7] into N time subintervals [t,,t,+1] of uniform size At with n € {0,...,
N —1}.

DEFINITION 2.1 (time block). A time block (or simply block) denotes the dis-
cretization of a time subinterval [ty,,tn+1] using M >0 grid points,

(2.2) Tom =tn + AtT,, me{l,...,M},
where the T, € [0,1] denote normalized grid points in time used for all blocks.

We choose the name “block” in order to have a generic name for the internal
steps inside each time subinterval. A block could be several time steps of a classical
time-stepping scheme (e.g., Runge-Kutta; cf. section 2.1.1), the quadrature nodes of
a collocation method (cf. section 2.1.2), or a combination of both. But in every case,
a block represents the time domain that is associated to one computational process
of the time parallelization. A block can also collapse by setting M :=1 and 7 := 1,
so that we retrieve a standard uniform time discretization with time step At¢. The
additional structure provided by blocks will be useful when describing and analyzing
two-level methods which use different numbers of grid points per block for each level;
cf. section 4.2.

DEFINITION 2.2 (block variable). A block variable is a vector
(23) Up = [un,laun,Qa-w,un,M]T,

where Uy, m 15 an approximation of u(7, m) on the time block for the time subinterval
[tn,tnt1]. For M =1, u, reduces to a scalar approzimation of w(Tp ) = u(tnt1).

Some iterative PinT methods like PARAREAL (see section 3) use values defined
at the interfaces between subintervals [t,,,t,+1]. Other algorithms, like PFASST (see
section 5), update solution values in the interior of blocks. In the first case, the block
variable is the right interface value with M =1 and thus 7 = 1. In the second case,
it consists of volume values in the time block [t,,t,+1] with M > 1. In both cases,
PinT algorithms can be defined as iterative processes updating the block variables.

Remark 2.3. While the adjective “time” is natural for evolution problems, PinT
algorithms can also be applied to recurrence relations in different contexts like deep
learning [29] or when computing Gauss quadrature formulas [24]. Therefore, we will
not systematically mention “time” when talking about blocks and block variables.

DEFINITION 2.4 (block operators). We denote as block operators the two linear
functions ¢ : CM — CM and x : CM — CM for which the block variables of a numerical
solution of (2.1) satisfy

(24) ¢(U1)ZX(U01), ¢(un+1):X(un)7 n:1,2,...,N71,

with 1 := [1,...,1]7. The time integration operator ¢ is bijective and x is a trans-
mission operator. The time propagator updating w, to w,y1 is given by

(25) 17[) = ¢_1X-
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2.1.1. Example with Runge—-Kutta methods. Consider numerical integra-
tion of (2.1) with a Runge-Kutta method with stability function

(2.6) R(z) ~¢é”.

Using ¢ equidistant time steps per block, there are two natural ways to write the
method using block operators:
1. The volume formulation: set M := ¢ with 7, :=m/M, m=1,..., M. Setting
r:= R(AAt/€)~!, the block operators are the M x M sparse matrices

, 0 ... 01
(2.7) =1 7 . oxi=| S0
2. The interface formulation: set M :=1 so that
(2.8) ¢:=ROAL/O™C x:=1.

2.1.2. Example with collocation methods. Collocation methods are special
implicit Runge-Kutta methods [52, Chap. 4, sect. 4] and instrumental when defining
PFASST in section 5. We show their representation with block operators. Starting
from the Picard formulation for (2.1) in one time subinterval [t,,tn41],

(2.9) u(t) =u(ty) +/t Au(T)dr,

we choose a quadrature rule to approximate the integral. We consider only Lobatto
or Radau-II type quadrature nodes where the last quadrature node coincides with
the right subinterval boundary. This gives us quadrature nodes for each subinterval
that form the block discretization points 7, ,, of Definition 2.1, with 7y = 1. We
approximate the solution u(7, ,,,) at each node by

M .
(2.10) Un,m = Un,0 + AAL Z Om,jUn,j With ¢ ;= / li(s)ds,
0

j=1

where [; are the Lagrange polynomials associated with the nodes 7,,,. Combining all
the nodal values, we form the block variable u,,, which satisfies the linear system

Un.o 0 ... 01

(2.11) (I-Qu, =

: : - Up—1 = Hu,_q,
Un,0 0O ... 01

with the quadrature matrix Q := AAt(¢pm ;), I the identity matrix, and H sometimes
called the transfer matrix that copies the last value of the previous time block to
obtain the initial value u, o of the current block.® The integration and transfer block
operators from Definition 2.4 then become® ¢ := (I - Q), x :=H.

5This specific form of the matrix H comes from the use of Lobatto or Radau-II rules, which treat
the right interface of the time subinterval as a node. A similar description can also be obtained for
Radau-I or Gauss-type quadrature rules that do not use the right boundary as node, but we omit it
for the sake of simplicity.

6The notation H is specific to SDC and collocation methods (see, e.g., [3]), while the x notation
from the GFM framework is generic for arbitrary time integration methods.
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n n+1 n n+1 n n+1

Fi1G. 1. kn-graphs for a generic primary block iteration (left), damped Block Jacobi (middle),
and Approzimate Block Gauss—Seidel (right).

2.2. Block iteration. Having defined the block operators for our problem, we
write the numerical approximation (2.4) of (2.1) as the all-at-once global problem

Lo} Uy x(uol)
-xX ¢ U 0
(2.12) Au = ) ) = . =:f.
-x ¢/ |un 0
Iterative PinT algorithms solve (2.12) by updating a vector u® = [uf,... uk]T to

w**1 until some stopping criterion is satisfied. If the global iteration can be written
as a local update for each block variable separately, we call the local update formula
a block iteration.

DEFINITION 2.5 (primary block iteration). A primary block iteration is an up-
dating formula for n >0 of the form

(2.13) urtl =BY(uf, )+ By (uf™) + By (uk), uf=uel VEkeN,

where BY, By, and BY) are linear operators from CM to CM that satisfy the consistency
condition”

(2.14) B! -I)y +By +B)=0
with v defined in (2.5).

Note that a block iteration is always associated with an all-at-once global problem,
and the primary block iteration (2.13) should converge to the solution of (2.12).

Figure 1 (left) shows a graphical representation of a primary block iteration using
a kn-graph to represent the dependencies of ufbfl on the other block variables. The
x-axis represents the block index n (time), and the y-axis represents the iteration
index k. Arrows show dependencies from previous n or k indices and can only go
from left to right and/or from bottom to top. For the primary block iteration, we
consider only dependencies from the previous block n and iterate k for uﬁii

More general block iterations can also be considered for specific iterative PinT
methods, e.g., MGRIT with FCF-relaxation (see Remark 3.1). Other algorithms
also consist of combinations of two or more block iterations, for example, STMG (cf.
section 4) or PFASST (cf. section 5). But we show in those sections that we can
reduce those combinations into a single primary block iteration, hence we focus here
mostly on primary block iterations to introduce our analysis framework.

We next describe the Block Jacobi relaxation (section 2.2.1) and the approxi-
mate Block Gauss—Seidel iteration (section 2.2.2), which are key components used to

describe iterative PinT methods.

7Condition (2.14) is necessary for the block iteration to have the correct fixed point.
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2.2.1. Block Jacobi relaxation. A damped Block Jacobi iteration for the
global problem (2.12) can be written as

(2.15) utt =uF L D TH(f - Aub),

where D is a block diagonal matrix constructed with the integration operator ¢, and
w >0 is a relaxation parameter. For n > 0, the corresponding block formulation is

(2.16) Uty = (1= W)ty +wd ™ xuy,

which is a primary block iteration with B = 0. Its kn-graph is shown in Figure 1
(middle). The consistency condition (2.14) is satisfied, since

(2.17) (1-w)I-T)p 'x+0+wp 'x=0.
Note that selecting w =1 simplifies the block iteration to
(2.18) urtl = ¢ 'xul

2.2.2. Approximate Block Gauss—Seidel iteration. Let us consider a Block
Gauss—Seidel type preconditioned iteration for the global problem (2.12),
¢
(2.19) ul =uf L PLL(f — AuP), Pos=|"X ¢ ,

where the block operator (]3 corresponds to an approximation of ¢. This approximation
can be based on time-step coarsening, but could also use other approaches, e.g., a
lower order time integration method. In general, ¢ must be cheaper than ¢, but it is
also less accurate. Subtracting u* in (2.19) and multiplying by Pgs yields the block
iteration of this Approzimate Block Gauss—Seidel (ABGS),

(2:20) bt = [1- 6] ul,, + ¢ xul ™.

Its kn-graph is shown in Figure 1 (right). Note that a standard Block Gauss—Seidel
iteration for (2.12) (i.e., with ¢ = ¢) is actually a direct solver, the iteration converges
in one step by integrating all blocks with ¢ sequentially, and its block iteration is
simply

(2.21) ubt! = ¢ xulb L,

2.3. Generating function and error bound for a block iteration. Before
giving a generic expression for the error bound of the primary block iteration (2.13)
using the GFM framework, we first need a definition and a preliminary result. The
primary block iteration (2.13) is defined for each block index n > 0, thus we can define
the following.

DEFINITION 2.6 (generating function). The generating function associated with
the primary block iteration (2.13) is the power series

o0
(222) pr(Q) =D e,
n=0
where efl_,_l = Hu’fH_l - un—«—lH is the difference between the k'™ iterate u’ﬁH_l and the

ezact solution w, 1 for one block of (2.4) in some norm on CM.

Since the analysis works in any norm, we do not specify a particular one here. In
the numerical examples we use the L> norm on CM

© 2023 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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LEMMA 2.7. The generating function for the primary block iteration (2.13) satis-

fies
Yt og
(2.23) Pr41(C) < = ﬁCpk(o’
where o 1= HBgH, 8= HBflJH’ v = ||B(1)H, and the operator norm is induced by the

chosen vector norm.

Proof. We start from (2.13) and subtract the exact solution of (2.4),
(2:24) Uy 11— oy =B (ugyy) + Bg (u ™) + B (ug)) — 1 (un).

Using the linearity of the block operators and the consistency condition (2.14) with
Uy, this simplifies to

(2.25) uflfl — Uy =By (uf  —upi) + By (ubt —u,) + BY (uk —u,).

We apply the norm and use the triangle inequality and the operator norms defined
above to get the recurrence relation

(2.26) entl <yehii + Beyt +acy

for the error. We multiply this inequality by ¢"*' and sum for n €N to get
(o] o) (o] (o]

(2.27) Z erti¢mtt <y Z ek ¢ 4B Z ebtientt 4o Z ek¢ntl,
n=0 n=0 n=0 n=0

Note that this is a formal power series expansion for ¢ small in the sense of generating
functions [34, section 1.2.9]. Using Definition 2.6 and that ef = 0 for all k¥ we find

(2.28) a1 (Q) SYoR(C) + BC Y et ¢t +agy Jenc.
n=1 n=1
Shifting indices leads to
(2:29) (1= B¢ pe+1(C) < (v + aC)pr(C)
and concludes the proof. ]

THEOREM 2.8. Consider the primary block iteration (2.13) and let

(2.30) 0:= max Hug - unH

n=1,.

be the mazximum error of the initial guess over all blocks. Then, using the notation of
Lemma 2.7, we have

(2.31) eni1 <Oni1(a,5,7)0

for k>0, where 95-5—1 is a bounding function defined as follows:
e if only v=0, then

k n—kk—1

(2-32) Hfﬂrl = (koi 1)! Z H(l + l)ﬁi§

T =0 =1

© 2023 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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e if only 8 =0, then

=Sk a\
¥ E <Z) (/y) otherwise;

e ifonly a =0, then

23 gt = o 6+

e if neither a, nor B, nor vy is zero, then

(2.35) ot — mljz(ék "Z( )(H—k ) (:)iﬁl‘

We call any error bound obtained from one of these formulas a GFM-bound.

The proof uses Lemma 2.7 to bound the generating function at k=0 by
(2.36) po(¢) <8y ¢,

which covers arbitrary initial guesses for defining starting values u? for each block.
For specific initial guesses, po(¢) can be bounded differently [21, Proof of Thm. 1].
The error bound is then computed by coefficient identification after a power series
expansion. The full rather technical proof can be found in Appendix A.

In the numerical examples shown below, we find that the estimate from The-
orem 2.8 is not always sharp; cf. section 5.5.1. If the last time point of the blocks
coincides with the right bound of the subinterval,® it is helpful to define the interface
error at the right boundary point of the nt" block as

(2.37) 1= [y — Ul
where @ is the last element of the block variable w. We then multiply (2.25) by
et =[0,...,0,1] to get

(2.38)  epg(untl —wnyr) =0 (uh g — wngr) + bg(uy ™ —w,) + by (uy; —up),

where b{ is the last row of the block operator B{ . Taking the absolute value on both
. . . k41 . .
sides, we recognize the interface error €, on the left-hand side. By neglecting the

error from interior points and using the triangle inequality, we get the approximation®
(2.39) ertl SAek .+ Beitt +ael
where & :=[bg], 5:=[b{], 7 := |bg).

8This is the case for all time-integration methods considered in this paper, even if this is not a
necessary condition to use the GFM framework.

9For an interface block iteration (M = 1,71 = 1), (2.39) becomes a rigorous inequality and
Corollary 2.9 thus becomes an upper bound.

(© 2023 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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COROLLARY 2.9 (interface error approximation). Defining for the initial interface
error the bound  := max,e(1,.. N} Hﬂ% — ﬂnH, we obtain for the interface error the
approximation

(240) é']r€1+1 §0§+167 éfwrl = 61’2+1(d757’7)7

with 0% ., defined in Theorem 2.8.

Proof. The result follows as in the proof of Lemma 2.7 using approximate rela-
tions. ]

Remark 2.10. For the general case, the error at the interface éﬁﬁ is not the same
as the error for the whole block efljﬁ. Only a block discretization using a single point
(M =1) makes the two values identical. Furthermore, Corollary 2.9 is generally not
an upper bound, but an approximation thereof.

3. Writing Parareal and MGRIT as block iterations.

3.1. Description of the algorithm. The PARAREAL algorithm introduced by
Lions, Maday, and Turinici [36] corresponds to a block iteration update with scalar
blocks (M = 1), and its convergence was analyzed in [26, 44]. We propose here a
new description of PARAREAL in the scope of the GFM framework, which states
that PARAREAL is simply a combination of two preconditioned iterations applied
to the global problem (2.12), namely one block Jacobi relaxation without damping
(section 2.2.1), followed by an ABGS iteration (section 2.2.2).

We denote by uF1/2 the intermediate solution after the Block Jacobi step. Using
(2.18) and (2.20), the two successive primary block iteration steps are

(3.1) w, = ¢ xul,
T k+1/2 | 7—
(3.2) ubtl = [I —¢ 1¢} unil/ + ¢ IxultL,
Combining both yields the primary block iteration
(3.3) ubth =07 x — ¢ x| uh + ¢ Ixul

Now as stated in section 2.2.2, 95 is an approximation of the integration operator ¢,
which is cheaper to invert but less accurate.'® In other words, if we define

(3.4) Fi=¢"'x, G:=¢""x
to be a fine and a coarse propagator on one block, then (3.3) becomes
(3.5) ultl = Ful + Gult — guk,

which is the PARAREAL update formula derived from the approximate Newton update
in the multiple shooting approximation in [26]. Iteration (3.5) is a primary block
iteration in the sense of Definition 2.5 with B} := 0, B} := G, and BJ := F — G. Its
kn-graph is shown in Figure 2 (left). The consistency condition (2.14) is satisfied,
since (0 —I)F + G + (F — G) = 0. If we subtract wl ., in (3.3), multiply both sides

101n the original paper [36], this approximation is done using larger time-steps, but many other
types of approximations have been used since then in the literature.
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g

k+1 o o
(F=G)oF

n n+1 n—1 n n+1

FI1G. 2. kn-graphs for PARAREAL/MGRIT with F-relazation (left) and MGRIT with FCF-
relazation/PARAREAL with overlap (right).

by ¢, and rearrange terms, we can write PARAREAL as the preconditioned fixed-point
iteration

¢
(3.6) W = L MUU(f - AuF), M= | 907X ¢ :

with iteration matrix Rpaparear =1 — M ™LA,

Remark 3.1. It is known in the literature that PARAREAL is equivalent to a two-
level MGRIT algorithm with F-relaxation [14, 22, 48]. In MGRIT, however, one
also often uses FCF-relaxation, which is a combination of two nondamped (w = 1)
Block Jacobi relaxation steps, followed by an ABGS step: denoting by w**1/3 and
ub+2/3 the intermediary Block Jacobi iterations, we obtain

(3.7) ul T = Ik,
k+2/3 —
up 3P = o xul 3,
(3.9) ubth = 1= @7 upld + g xul .

Shifting the n index in the first Block Jacobi iteration, combining all of them and
reusing the F and G notation then gives
(3.10) w bt =B (w ) + By (wit), BL =(F-G)F, By =G,
which is the update formula of PARAREAL with overlap, shown to be equivalent to
MGRIT with FCF-relaxation [22, Thm. 4].11

This block iteration, whose kn-graph is represented in Figure 2 (right), not only
links two successive block variables with time index n+ 1 and n, but also uses a block
with time index n — 1. It is not a primary block iteration in the sense of Definition
2.5 anymore. Although it can be analyzed using generating functions [22, Thm. 6],
we focus on primary block iterations here and leave more complex block iterations
like this one for future work.

3.2. Convergence analysis with GFM-bounds. In their convergence analy-

sis of PARAREAL for nonlinear problems [21], the authors obtain a double recurrence of

the form efljﬁ < aek + Bekt1 where a and 3 come from Lipschitz constants and local

1Tt was shown in [22] that MGRIT with (FC)”F-relaxation, where v > 0 is the number of
additional FC-relaxations, is equivalent to an overlapping version of PARAREAL with v overlaps.
Generalizing our computations shows that those algorithms are equivalent to (v — 1) nondamped
Block Jacobi iterations followed by an ABGS step.
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truncation error bounds. Using the same notation as in section 3.1, with a = ||F — G|
and B =G|, we find [21, Thm. 1] that

k k
(3.11) ek §5%B"‘kn(n+l—l), 3 = max(1, §).
=1

This is different from the GFM-bound

k n—kk—1

(3.12) eni1 < 5% Z H(l +0)8"

T =0 1=1

we get when applying Theorem 2.8 with v = 0 to the block iteration of PARAREAL.
The difference stems from an approximation in the proof of [21, Thm. 1] which leads
to the simpler and more explicit bound in (3.11). The two bounds are equal when
B =1, but for 8 # 1, the GFM-bound in (3.12) is sharper. To illustrate this, we use
the interface formulation of section 2.1.1: we set M := 1, 71 := 1 and use the block
operators

(3.13) ¢:=ROAAL/N)™" x:=1, ¢:=Ra(NAt/lx) .

We solve (2.1) for A € {i,—1} with ¢ € [0,27] and ug =1, using N := 10 blocks, ¢ :=10
fine time steps per block, the standard fourth order Runge-Kutta method for ¢, and
{a = 2 coarse time steps per block with Backward Euler for ¢. Figure 3 shows the
resulting error (dashed line) at the last time point, the original error bound (3.11),
and the new bound (3.12). We also plot the linear bound obtained from the L* norm
of the iteration matrix Rpyrarear defined just after (3.6). For both values of A, the
GFM-bounds coincide with the linear bound from Rpaparear for the first iteration,
and the GFM-bound captures the superlinear contraction in later iterations. For
A =1, the old and new bounds are similar since (3 is close to 1. However, for A = —1
where [ is smaller than one, the new bound gives a sharper estimate of the error,
and we can also see that the new bound captures well the transition from the linear
to the superlinear convergence regime. On the left in Figure 3, PARAREAL seems to
converge well for imaginary A = . This, however, should not be seen as a working
example of PARAREAL for a hyperbolic type problem, but is rather the effect of the
relatively good accuracy of the coarse solver using 20 points per wave length for one
wavelength present in the solution time interval we consider. Denoting by ea the
Lo, error with respect to the exact solution, the accuracy of the coarse solver (ea =
6.22e-01) allows the PARAREAL error to reach the fine solver error (ea = 8.16e-07) in
K =8 iterations. Since the ideal parallel speedup of PARAREAL, neglecting the coarse
solver cost, is bounded by N/K =1.25 [1, sect. 4], this indicates, however, almost no
speedup in practical applications (see also [28]). If we increase the coarse solver error,
for instance by multiplying A by a factor 4 to have now four times more wavelength
in the domain, and only 12.5 points per wavelength resolution in the coarse solver,
the convergence of PARAREAL deteriorates massively, as we can see in Figure 4 (left),
while this is not the case for the purely negative real fourfold A = —4.

This illustrates how Parareal has great convergence difficulties for hyperbolic
problems, already well-documented in the literature; see, e.g., [17, 23]. This is anal-
ogous to the difficulties due to the pollution error and damping in multigrid meth-
ods when solving medium to high frequency associated time harmonic problems; see
[10, 12, 13, 19, 7] and references therein.
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F1G. 3. Error bounds for PARAREAL for (2.1). Left: A =1; right: A= —1. Note that for A =1,
the GFM-bound and the original one are almost identical.
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F1G. 4. Error bounds for PARAREAL for (2.1). Left: A =4i; right: A= —4.

4. Writing two-level Time Multi-Grid as a block iteration. The idea
of TMG goes back to the 1980s and 1990s [5, 30, 41]. Furthermore, not long after
PARAREAL was introduced, it was shown to be equivalent to a TMG method, indepen-
dently of the type of approximation used for the coarse solver [26]. This inspired the
development of other time multilevel methods, in particular MGRIT [14]. However,
PARAREAL and MGRIT are usually viewed as iterations acting on values located at
the block interface, while TMG-based algorithms, in particular STMG [25], use an
iteration updating volume values (i.e., all fine time points in the time domain). In
this section, we focus on a generic description of TMG and show how to write its
two-level form applied to the Dahlquist problem as block iteration. In particular, we
will show in section 5 that PFASST can be expressed as a specific variant of TMG.
The extension of this analysis to more levels and comparison with multilevel MGRIT
is left for future work.

4.1. Definition of a coarse block problem for Time Multi-Grid. To build
a coarse problem, we consider a coarsened version of the global problem (2.12), with
an A matrix having N - M rows instead of N - M for A. For each of the N blocks,
let (75)1<m<n. be the normalized M¢ grid points'? of a coarser block discretization,
with Mo < M.

12Those do not need to be a subset of the fine block grid points, although they usually are in
applications.
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We can define a coarse block operator ¢~ by using the same time integration
method as for ¢ on every block, but with fewer time points. This is equivalent to
geometric coarsening used for h-multigrid (or geometric multigrid [51]), e.g., when
using one time step of a Runge-Kutta method between each time grid point. It can
also be equivalent to spectral coarsening used for p-multigrid (or spectral element
multigrid [43]), e.g., when one step of a collocation method on M points is used
within each block (as for PFASST, see section 5.3).

We also consider the associated transmission operator X and denote by u the
block variable on this coarse time block, which satisfies

(4.1) (],’)C(u?):chg(uol), ¢Cug+1zxcug7 n=12,...,N—1.

Let u© be the global coarse variable that solves

Pc ug xc TG (uol)
(4.2) Acu® = Xo %o “ = ; =: fC.
-Xc ¢ “% 0

T% is a block restriction operator, i.e., a transfer matrix from a fine (F) to a coarse
(C) block discretization. Similarly, we have a block prolongation operator Tg, ie., a
transfer matrix from a coarse (C) to a fine (F) block discretization.

Remark 4.1. While both ¢, and ¢ are approximations of the fine operator ¢,
the main difference between ¢, and (]3 is the size of the vectors they can be applied
to (Mc and M). Furthermore, ¢ itself does need the transfer operators TE and
T% to compute approximate values on the fine time points, while <1~5 alone is sufficient
(even if it can hide some restriction and interpolation process within). However, the
definition of a Coarse Grid Correction in the classical multigrid formalism needs this
separation between transfer and coarse operators (see [51, sect. 2.2.2]), which limits
the use of ¢ and requires the introduction of ¢.

4.2. Block iteration of a Coarse Grid Correction. Let us consider a stand-
alone Coarse Grid Correction (CGC), without pre- or postsmoothing,'? of a two-level
multigrid iteration [31] applied to (2.12). One CGC step applied to (2.12) can be
written as

(4.3) uP Tt =P L TEA' TG (f — Aub),

where TZ, denotes the block diagonal matrix formed with TE on the diagonal, and
similarly for T%. When splitting (4.3) into two steps,

(4.4) Acd=TEH(f - Aub),
(4.5) ut =P + TEd,

the CGC term (or defect) d appears explicitly. Expanding the two steps for n >0
into a block formulation and inverting ¢ leads to

(4.6) dny1= oo TExul — o' TEPul | + o' xcdn,

(4.7) uply =g+ Todnin

13The CGC is not convergent by itself without a smoother.
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F1G. 5. kn-graphs for the CGC block iteration, with Assumption 4.2 only (left) and with both
Assumptions 4.2 and 4.3 (right).

Now we need the following simplifying assumption.
Assumption 4.2. Prolongation TE followed by restriction T% leaves the coarse
block variables unchanged, i.e.,

(4.8) TOTE =1.

This condition is satisfied in many situations (e.g., restriction with standard injection
on a coarse subset of the fine points, or polynomial interpolation with any possible
coarse block discretization).!* Using it in (4.7) for block index n yields

(4.9) d,=T¢ (ubt —ul).
Inserting d,, into (4.6) on the right and the resulting d,, 11 into (4.7) leads to
(410)  w i == Toho Thd)up .y + Tad xo Thun™ + Tade! Acuy,

with A, :==T%x — xT%.
This is a primary block iteration in the sense of Definition 2.5, and we give its
kn-graph in Figure 5 (left). We can simplify it further using a second assumption.

Assumption 4.3. We consider operators Tg, x and X such that
(4.11) A, =TSx — xc TS =0.

This holds for classical time-stepping methods when both left and right time subin-
terval boundaries are included in the block variables, or for collocation methods using
Radau-II or Lobatto type nodes.

This last assumption is important to define PFASST (cf. section 5.3 and see
Bolten, Moser, and Speck [3, Remark 1] for more details) and simplifies the analysis
of TMG, as both methods use this block iteration. Then, (4.10) reduces to

(4.12) uﬁﬁ-(l Todo TEo)ul Uy 1 + T Thxul ™.

Again, this is a primary block iteration for which the kn-graph is given in Figure 5
(right) It satisfies the consistency condition'® (2.14) since (I — TE¢o'TGe) —

D¢ 'x+TEdc' TEx =0.

141In some situations, e.g., when the transpose of linear interpolation is used for restriction (full-
weighting), we do not get the identity in Assumption 4.2 but an invertible matrix. The same sim-
plifications can be done, except one must take into account the inverse of (Tng)

15Note that the consistency condition is satisfied even without Assumption 4.3.
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4.3. Two-level Time Multi-Grid. Gander and Neumdiller introduced STMG
for discontinuous Galerkin approximations in time [25], which leads to a similar sys-
tem as (2.12). We describe the two-level approach for general time discretizations,
following their multilevel description [25, sect. 3]. Consider a coarse problem defined
as in section 4.2 and a damped Block Jacobi smoother as in section 2.2.1 with relax-
ation parameter w. Then, a two-level TMG iteration requires the following steps,
each corresponding to a block iteration:

1. vy prerelaxation steps (2.15) with Block Jacobi smoother,

2. one CGC (4.3) inverting the coarse grid operators,

3. vy postrelaxation steps (2.15) with the Block Jacobi smoother.
If we combine all these block iterations we do not obtain a primary block iteration but
a more complex expression, of which the analysis is beyond the scope of this paper.
However, a primary block iteration in the sense of Definition 2.5 is obtained when

e Assumption 4.3 holds, so that A, =0,

e only one prerelaxation step is used, v1 =1,

e and no postrelaxation step is considered, 5 = 0.
Then, the two-level iteration reduces to the two block updates from (2.16) and (4.12),

(4.13) T = (1 —w)ul )+ weixuk,
k
(4.14) ubtl = (1-TE¢o TG¢) upty” + Thpo xoThul ™,

using k + 1/2 as an intermediate index. Combining (4.13) and (4.14) leads to the
primary block iteration

(4.15) UZ—H —( - ¢ClT ¢) [( )Uﬁﬂ +w¢71xu ] ¢C XCTC i

If w # 1, all block operators in this primary block iteration are nonzero, and apply-
ing Theorem 2.8 leads to the error bound (2.35). Since the latter is similar to the
one obtained for PFASST in section 5.5.2, we leave its comparison with numerical
experiments to section 5. For w =1 we get the simplified iteration

(4.16) ubt = (67X~ Teoo Trx) un + Todo xc Truy !

and the following result.

PRrOPOSITION 4.4. Consider a CGC as in section 4.2, such that the prolongation
and restriction operators (in time) satisfy Assumption 4.2. If Assumption 4.3 also
holds and only one Block Jacobi prerelaxation step (2.15) with w = 1 is used before
the CGC, then two-level TMG is equivalent to PARAREAL, where the coarse solver G
uses the same time integrator as the fine solver F but with larger time steps, i.e.,

(4.17) G:=T{o Thx

This is a particular case of a result obtained before by Gander and Vandewalle [26,
Theorem 3.1] but is presented here in the context of our GFM framework and the
definition of PARAREAL given in section 3.1. In particular, it shows that the simplified
two-grid iteration on (2.12) is equivalent to the preconditioned fixed-point iteration
(3.6) of PARAREAL if some conditions are met and o= Tg(i-”(_le}C«: is used as the
approximate integration operator.'® However, the TMG iteration here updates also

16Note that, even if Tg¢51Tg is not invertible, this abuse of notation is possible as (3.6)
requires an approximation of ¢~ ! rather than an approximation of ¢ itself.
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the fine time point values, using Tg to interpolate the coarse values computed with
¢, hence applying the PARAREAL update to all volume values. This is the only
“difference” with the original definition of PARAREAL in [36], where the update is
only applied to the interface value between blocks.

One key idea of STMG that we have not described yet is the block diagonal
Jacobi smoother used for relaxation. Even if its diagonal blocks use a time integration
operator identical to those of the fine problem (hence requiring the inversion of ¢),
their spatial part in STMG is approximated using one V-cycle multigrid iteration in
space based on a pointwise smoother [25, sect. 4.3]. We do not cover this aspect in
our description of TMG here, since we focus on time only, but describe in the next
section a similar approach that is used for PFASST.

5. Writing PFASST as a block iteration. PFASST is also based on a TMG
approach using an approximate relaxation step, but the approximation of the Block
Jacobi smoother is done in time and not in space, in contrast to STMG. In addition,
the CGC in PFASST is also approximated, i.e., there is no direct solve on the coarse
level to compute the CGC as in STMG. One PFASST iteration is therefore a combi-
nation of an Approzimate Block Jacobi (ABJ) smoother (see section 5.2), followed by
one (or more) ABGS iteration(s) of section 2.2.2 on the coarse level to approximate
the CGC [11, sect. 3.2]. While we describe only the two-level variant, the algorithm
can use more levels [11, 49]. The main component of PFASST is the approxima-
tion of the time integrator blocks using Spectral Deferred Correction (SDC) [9], from
which its other key components (ABJ and ABGS) are built. Hence we first describe
how SDC is used to define an ABGS iteration in section 5.1, then ABJ in section 5.2,
and finally PFASST in section 5.3.

5.1. Approximate Block Gauss—Seidel with Spectral Deferred Correc-
tion. SDC can be seen as a preconditioner when integrating the ODE problem (2.1)
with collocation methods; see section 2.1.2. Consider the block operators

(5.1) »=1-Q), x=H = (I-Quys1=Hu,.

SDC approximates the quadrature matrix Q by
0

where l~j is an approximation of the Lagrange polynomial /;. Usually, Qa is lower
triangular [46, sect. 3] thus easy to invert.!” This approximation is used to build the
preconditioned iteration

(5.3) uﬁﬁ =ub, +[1-Qal™" (Hu, — (I— Q)UZH)

to solve (5.1), with u,41 as unknown. We obtain the generic preconditioned iteration
for one block,

(5.4) ubtl = [1-6710|ul, + 6 xu, with ¢:=1-Qa.

This shows that SDC inverts the ¢ operator approximately using qg block by block
to solve the global problem (2.12), i.e., it fixes an n in (5.4), iterates over k until

17The notation Qa was chosen instead of Q for consistency with the literature; cf. [46, 3, 4].
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F1G. 6. kn-graphs for Block Jacobi SDC (left) and Block Gauss—Seidel SDC' (right).

convergence, and then increments n by one. Hence SDC gives a natural way to define
an approximate block integrator ¢ to be used to build ABJ and ABGS iterations.
Defining the ABGS iteration (2.19) of section 2.2.2 using the SDC block operators
gives the block updating formula

(5.5) uf = uf 4 T Qal ! (Hul ! — (I-Q)ut,,),

which we call Block Gauss—Seidel SDC, very similar to (5.3) except that we use the

new iterate u**! and not the converged solution u,,. This is a primary block iteration

in the sense of Definition 2.5 with
BY:=1-[1-Qa] 'I-Q)=I-Qa]"(Q-Qa),

5.6
(56) Bj:=0, Bj:=[—-Qa] 'H,

and its kn-graph is shown in Figure 6 (right).

5.2. Approximate Block Jacobi with Spectral Deferred Correction.
Here we solve the global problem (2.12) using a preconditioner that can be easily
parallelized (Block Jacobi) and combine it with the approximation of the collocation
operator ¢ by ¢ defined in (5.1) and (5.4). This leads to the global preconditioned
iteration

¢
(5.7) u T =uf +PJL(f - AuF), Pre.= ¢

Jac

This is equivalent to the Block Jacobi relaxation in section 2.2.1 with w =1, except

that the block operator ¢ is approximated by ¢. Using the SDC block operators (5.1)

gives the block updating formula

(5.8) upty =up g+ 1= Qal ™ (Huy — (T- Q)uy,y),

which we call Block Jacobi SDC'. This is a primary block iteration with

(5.9) Bl :=I-[1-Qa] 'I-Q)=[I-Qal ' (Q—-Qa),
B):=[I-Qa]"'H, B}:=0.

Its kn-graph is shown in Figure 6 (left). This block iteration can be written in the
more generic form

(5.10) bt = [1- 67 g] uk,, + 3~ xul,

This is similar to (5.4) except that we use the current iterate u® from the previous
block and not the converged solution u,,. Note that ¢ and ¢ do not need to correspond
to the SDC operators (5.1) and (5.4). This block iteration does not explicitly depend
on the use of SDC, hence the name Approximate Block Jacobi.
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5.3. PFASST. We now give a simplified description of PFASST [11] applied to
the Dahlquist problem (2.1). In particular, this corresponds to doing only one SDC
sweep on the coarse level. To write PFASST as a block iteration, we first build
the coarse level as in section 4.2. From that we can form the Q quadrature matrix
associated with the coarse nodes and the coarse matrix ﬁ, as we would have done if
we were using the collocation method of section 2.1.2 on the coarse nodes. This leads
to the definition of the ¢ and x operators for the coarse level, combined with the
transfer operators Tg and Tg, from which we can build the global matrices A, Tg
and Tg; see section 4.2. Then we build the two-level PFASST iteration by defining
a specific smoother and a modified CGC.

The smoother corresponds to a Block Jacobi SDC iteration (5.8) from section 5.2
to produce an intermediate solution

(5.11) ub 2 =[1-Qal H(Q - Qa)ul,, +[1- Qa] 'Hul,

denoted with iteration index k + 1/2. Using a CGC as in section 4.2 would provide
the global update formula

(5.12) Acd=TC(f — AuFt1/?),
(5.13) uhtl = b2 L TEd.
Instead of a direct solve with A¢ to compute the defect d, in PFASST one uses

L Block Gauss—Seidel SDC iterations (or sweeps) to approximate it. Then (5.12)
becomes

(5.14) Pggd’ = (Pgs — Ao)d '+ TS(f — AuFtY/2), d°=0, re{1,...,L},
and reduces for one sweep only (L=1) to

b
(515) ﬁgsd = Tg(f — Auk+1/2), f’GS = | —Xc ¢C

Here Py correspond to the Pgg preconditioning matrix, but written on the coarse
level using an SDC-based approximation ¢ of the ¢~ coarse time integrator. Com-
bined with the prolongation on the fine level (5.13), we get the modified CGC update

bc
(5.16) wftt =2 L TEPCLTO(f — AuftY?), Pos= |~Xc ¢c :

and together with (5.11) a two-level method for the global system (2.12) [4, sect. 2.2].
Note that this is the same iteration we obtained for the CGC in section 4.2, except
that the coarse operator ¢~ has been replaced by ¢-. Assumption 4.3 holds, since
using Lobatto or Radau-II nodes means H has the form (2.11), which implies

(5.17) A, =T%H-HTS =0.

Using similar computations as in section 4.2 and the block operators defined for col-
location and SDC (cf. sections 2.1.2 and 5.1) we obtain the block iteration

- _ k = —
(5:18)  wbtl=[I-TEI-Qa) ' TEI - Q)luyty/* + TET - Qa) ' TEHu
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TABLE 1
Classification of two-level TMG methods, depending on their smoother for fine-level relaxzation
and computation of the CGC.

Smoother
Block Jacobi (w = 1) | Approximate block Jacobi
CGC
Direct solver TMG (w=1) TMGy
ABGS (one step) TMG. Two-level PFASST

by substitution into (4.12). Finally, the combination of the two gives

ut =[I-TEI-Qa) 'TEI- Q)T - Qa] Q- Qa)ul,
(5.19) +(I-TEI-Qa] ' TF(I- Q))[I- Qa] 'Huj,
+TEI - Qa) ' TEHuF L

Using the generic formulation with the ¢ operators gives!'®

~—1 ~_
(5.20) wti == Téde Trel(I- ¢ PJusy
. ~—1 ~_ ~—1
+(I-TEpe TGh)d  xul + Thde TExul™.

This is again a primary block iteration in the sense of Definition 2.5, but in contrast
to most previously described block iterations, all block operators are nonzero.

5.4. Similarities between PFASST, TMG, and Parareal. From the de-
scription in the previous section, it is clear that PFASST is very similar to TMG.
While TMG uses a (damped) Block Jacobi smoother for prerelaxation and a direct
solve for the CGC, PFASST uses instead an approximate Block Jacobi smoother
and solves the CGC using one (or more) ABGS iterations on the coarse grid. This
interpretation was obtained by Bolten, Moser, and Speck [3, Theorem 1] but is de-
rived here using the GFM framework, and we summarize those differences in Table 1.
Changing only the CGC or the smoother in TMG with w = 1 in contrast to both
like in PFASST produces two further PinT algorithms. We call those TMG,. (re-
placing the coarse solver by one step of ABGS) and TMG; (replacing the fine Block
Jacobi solver by ABJ). Note that TMG, can be interpreted as PARAREAL using an
approximate integration operator and larger time step for the coarse propagator if we
set

~—1
(5.21) G:=TEdo TGx.

Thus, the version of PARAREAL used in section 3.2 is equivalent to TM G, and differs
from PFASST only by the type of smoother used on the fine level.

5.5. Analysis and numerical experiments.

5.5.1. Convergence of PFASST iteration components. Since Block Jacobi
SDC (5.8) can be written as a primary block iteration, we can apply Theorem 2.8 with
B =0 to get the error bound

S(y+ )k if k <n,

22 ni1 < - (F Z
(5 ) €n+1 >~ (S'Yk Z (Z) (:) otherwise,
i=0

18We implicitly use [ — Qa] ' (Q - QaA)=TI—[I—Qa] 1T - Q) =1— ¢~ 1¢; see (5.6).
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Fic. 7. Comparison of numerical errors with GFM-bounds for Block Jacobi SDC and Block
Gauss—Seidel SDC. Left: error on the block variables (dashed), GFM-bounds (solid), linear bound
from the iteration matriz (dotted). Right: error estimate using the interface approzimation from
Corollary 2.9. Note that the numerical errors on block variables (left) and at the interface (right)
are close but not identical (see Remark 2.10).

with v := ||[I- Qa]7(Q — Qa)||, @:=||[I - Qa] 'H||. Note that v is proportional
to AAt through the Q — Qa term and for small At, « tends to ||H|| which is constant.
We can identify two convergence regimes: for early iterations (k <n), the bound does
not contract if v+« > 1 (which is generally the case). For later iterations (k > n), a
small-enough time step leads to convergence of the algorithm through the v* factor.
Similarly, for Block Gauss—Seidel SDC (5.5), Theorem 2.8 with a=0 gives

n k—1

k
(5.23) hn <0ty S T16+08"

T i=0 =1

where v:=||[I- Qa7 (Q - Qa)|, B:=||[l — Qa] *H]|. This iteration contracts in
early iterations if v is small enough. Since the value for 7y is the same for both Block
Gauss—Seidel SDC and Block Jacobi-SDC, both algorithms have an asymptotically
similar convergence rate.

We illustrate this with the following example. Let A := i, ug := 1, and let the
time interval [0, 7] be divided into N = 10 subintervals. Inside each subinterval, we
use one step of the collocation method from section 2.1.2 with M := 10 Lobatto—
Legendre nodes [27]. This gives us block variables of size M =10 and we choose Qa
as the matrix defined by a single Backward Euler step between nodes to build the ¢
operator. The starting value u° for the iteration is initialized with random numbers
starting from the same seed. Figure 7 (left) shows the numerical error for the last
block using the L norm, the bound obtained with the GFM method, and the linear
bound using the norm of the global iteration matrix. As for PARAREAL in section 3.2,
the GFM-bound is similiar to the iteration matrix bound for the first few iterations,
but much tighter for later iterations. In particular, the linear bound cannot show the
change in convergence regime of the Block Jacobi SDC iteration (after k¥ = 10) but
the GFM-bound does. Also, we observe that while the GFM-bound overestimates the
error, the interface approximation of Corollary 2.9 gives a very good estimate of the
error at the interface; see Figure 7 (right).

5.5.2. Analysis and convergence of PFASST. The GFM framework pro-
vides directly an error bound for PFASST: applying Theorem 2.8 to (5.19) gives
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Fic. 8. Comparison of numerical errors with GFM-bounds for PFASST. Left: error bound
using volume values. Right: estimate using the interface approximation. Note that the numerical
errors on block variables (left) and at the interface (right) are very close but not identical (see
Remark 2.10).

o s EEOCT ()

with  := ||l = TE — Qa) TSI — Q)Jl — Qal~(Q — Qa)ll, § = ITE( —
Qa)~THTY]], and a:= [|(T— TE[L - Qa]~'TE(I— Q)L - Qa]'HI|.

We compare this bound with numerical experiments. Let A :=1, ug := 1. The time
interval [0,27] for the Dahlquist problem (2.1) is divided into N = 10 subintervals.
Inside each subinterval we use M := 6 Lobatto—Legendre nodes on the fine level and
M := 2 Lobatto nodes on the coarse level. The Qa and Q A operators use Backward
Euler. In Figure 8 (left) we compare the measured numerical error with the GFM-
bound and the linear bound from the iteration matrix. As in section 5.5.1, both
bounds overestimate the numerical error, even if the GFM-bound shows convergence
for the later iterations, which the linear bound from the iteration matrix cannot. We
also added an error estimate built using the spectral radius of the iteration matrix,
for which an upper bound was derived in [4]. For this example, the spectral radius
reflects the asymptotic convergence rate for the last iterations better than GFM.
This highlights a weakness of the current GFM-bound: applying norm and triangle
inequalities to the vector error recurrence (2.25) can induce a large approximation
error in the scalar error recurrence (2.26) that is then solved with generating functions.
Improving this is planned for future work.

However, one advantage of the GFM-bound over the spectral radius is its generic
aspect allowing it to be applied to many iterative algorithms, even those having an
iteration matrix with spectral radius equal to zero like PARAREAL [45]. Further-
more, the interface approximation from Corollary 2.9 allows us to get a significantly
better estimation of the numerical error, as shown in Figure 8 (right). For the GFM-
bound we have («, 3,7v) =(0.16,1,0.19), while for the interface approximation we get
(@,,%) = (0.16,0.84,0.02). In the second case, since 7 is one order smaller than the
other coefficients, we get an error estimate that is closer to the one for PARAREAL
in section 3.2 where v = 0. This similarity between PFASST and PARAREAL (cf.
section 5.4) will be highlighted in the next section.

6. Comparison of iterative PinT algorithms. Using the notation of the
GFM framework, we provide the primary block iterations of all iterative PinT
algorithms investigated throughout this paper in Table 2. In particular, the first
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TABLE 2
Summary of all the methods we analyzed, and their block iteration operators. Note that TMG
with w =1 and TMG¢. corresponds to PARAREAL with a specific choice of the coarse propagator.

Algorithm BY (uﬁ_H) B8 (uk) Bé (uﬁ"'l)
Damped Block Jacobi I—wl wpIx —
ABJ I-¢~'¢ d~1x -
ABGS I-¢1¢ - o~ 1x
PARAREAL - (o' —dp~V)x ¢ 1x
TMG (1-w)I-TEDG ' TE D) w(o™ ' —TEP'TG)x  TEdL TEx
TMG, - (@7 -TEéo TOx  Thde Tex
TMG I-TEPS TED) I~ ¢) (¢7 ~TEd TGP )x TEd TEX
PFASST (I-TEdc TEH)I—d~1¢) ('~ TEde TEhpd—)x Thbo TEx
TABLE 3

Maximum error over time for each block propagator run sequentially. The first column shows
the error of the fine propagator, while the next three columns show the error of the three possible
approximate propagators. In the top row, ¢ corresponds to a collocation method with M =5 nodes
while ¢ is a collocation method with M =3 nodes. q~5 is a backward Euler method with M =5 steps
per block while q;c is Backward Euler with M = 3 steps per block. In the bottom row, ¢ corresponds
to M =5 uniform steps per block of a fourth order Runge—Kutta method, and ¢ is the same method
with M = 3 steps per block. qg is a second order Runge—Kutta method (Heun) with M =5 uniform
steps per block while qgc is the same method with M = 3 uniform time steps per block.

— g — ~—1
o 'x ¢ 'x TEdo TEx TEdo TEX
Figure 9 (left) 1.20e~° 3.57e7t 1.19¢~2 4.87¢7 1
Figure 9 (right) 3.14e~4 6.24e~2 5.14e~3 2.67e~1

rows summarize the basic block iterations used as components to build the iterative
PinT methods. While damped Block Jacobi (section 2.2.1) and ABJ (section 5.2)
are more suitable for smoothing,' ABGS (section 2.2.2) is mostly used as a solver
(e.g., to compute the CGC). This allows us to compare the convergence of each block
iteration, and we illustrate this with the following examples.

We consider the Dahlquist problem with A :=2i—0.2, ug = 1. First, we decompose
the simulation interval [0,2n] into N = 10 subintervals. Next, we choose a block
discretization with M = 5 Lobatto—Legendre nodes, a collocation method on each
block for fine integrator ¢; see section 2.1.2. We build a coarse block discretization
using Mc = 3, and define on each level an approximate integrator using Backward
Euler. This allows us to define the <Z), ¢c, and qgc integrators; see the legend of
Table 3 for more details, where we show the maximum absolute error in time for
each of the four propagators run sequentially. The high order collocation method
with M = 5 nodes ¢~ 'x is the most accurate. The coarse collocation method with
M = 3 nodes interpolated to the fine mesh is still more accurate than the Backward
Euler method with M =5 nodes (]3_1)( or the Backward Euler method with M =3
interpolated to the fine mesh. Then we run all algorithms in Table 2, initializing the
block variable iterate with the same random initial guess. The error for the last block
variable with respect to the fine sequential solution is shown in Figure 9 (left). In
addition, we show the same results in Figure 9 (right), but using the classical fourth
order Runge-Kutta method as a fine propagator, second order Runge-Kutta (Heun

19Note that algorithms used as smoothers have B(l) =0, which is a necessary condition for parallel
computation across all blocks.
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Fic. 9. Comparison of iterative methods convergence using the GFM framework. Left: collo-
cation as fine integrator. Right: fourth order Runge—Kutta method as fine integrator. PARAREAL
(w=1) and PARAREAL (TMG.) denote a specific coarse propagator for PARAREAL.

method) for the approximate integration operator, and equidistant points using a
volume formulation as described in section 2.1.1. Note that PAIEAREAL, TMG -1,
and TMG, are each PARAREAL algorithms using respectively ¢—1x, ng)angx,

and qusnggx as coarse propagator G (see Table 3 for their discretization error).

The TMG iteration converges fastest, since it uses the most accurate block inte-
grators on both levels; cf. Table 3. Keeping the same CGC but approximating the
smoother, TMG; improves the first iterations, but convergence for later iterations
is closer to PFASST. This suggests that convergence for later iterations is mostly
governed by the accuracy of the smoother since both TMG ¢ and PFASST use ABJ.
This is corroborated by the comparison of PFASST and TMG,, which differ only
in their choice of smoother. While the exact Block Jacobi relaxation makes TMG.,
converge after k = N iterations (a well-known property of PARAREAL), using the ABJ
smoother means that PFASST does not share this property.

On the other hand, the first iterations are also influenced by the CGC accuracy.
The iteration error is very similar for PFASST and TMG,, which have the same CGC.
This is more pronounced when using the fourth order Runge—Kutta method for ¢, as
we see in Figure 9 (right). Early iteration errors are similar for two-level methods that
use the same CGC (TMG/TMG/, and PFASST/ TMG,). Similarities of the first
iteration errors can also be observed for PARAREAL and ABGS. Both algorithms use
the same B} operator; see Table 2. This suggests that early iteration errors are mostly
governed by the accuracy of B}, which is corroborated by the two-level methods
(TMG and TMG  use the same B{ operator, as PFASST and TMG,).

Remark 6.1. An important aspect of this analysis is that it compares only the
convergence of each algorithm, and not their overall computational cost. For instance,
PFASST and TMG, appear to be equivalent for the first iterations, but the block
iteration of PFASST is cheaper than TMG,, because an approximate block integra-
tor is used for relaxation. To account for this and build a model for computational
efficiency, the GFM framework would need to be combined with a model for compu-
tational cost of the different parts in the block iterations. Such a study is beyond the
scope of this paper but is the subject of ongoing work.

7. Conclusion. We have shown that the generating function method (GFM)
can be used to compare convergence of different iterative PinT algorithms. To do so,
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we formulated popular methods like PARAREAL, PFASST, MGRIT, and TMG in a
common framework based on the definition of a primary block iteration. The GFM
analysis showed that all these methods eventually converge superlinearly?® due to the
evolution nature of the problems. We confirmed this by numerical experiments, and
our PYTHON code is publically available [37].

Our analysis opens up further research directions. For example, studying multi-
step block iterations like MGRIT with FCF-relaxation and more complex two-level
methods without Assumption 4.3 would be a useful extension of the GFM framework.
Similarly, an extension to multilevel versions of STMG, PFASST, and MGRIT
would be very valuable. Finally, in practice PinT methods are used to solve space-
time problems. The GFM framework should be able to provide convergence bounds
in this case as well, potentially even for nonlinear problems, considering GFM was
used successfully to study PARAREAL applied to nonlinear systems of ODEs [21].

Appendix A. Error bounds for primary block iterations.

A.1. Incomplete primary block iterations. First, we consider

(A:2) (PBL2):  whth =BY(uk,,) + B (ub),
A3) (PBL3): wbth =B (ul,,) + B) (uh™).

(PBI-1):  ull] =Bj (ul™) +Bf (uf),

where one block operator is zero. (PBI-1) corresponds to PARAREAL, (PBI-2) to
Block Jacobi SDC, and (PBI-3) to Block Gauss—Seidel SDC. We recall the notation

(A1) o= By, Be=[IBl. =B

Application of Lemma 2.7 gives the recurrence relations

a¢ ¢\
(A5 PBLD: pn(0) = 1 25m0) =m0 <ot (15 ) mlo).
k
(A6)  (PBL2):  prealQ) < (v +aC)pn(¢) = pr() < * (1+‘;‘<) 0(0).
(A7) (PBES): g (O < T2 = (O € Wkﬁpo@)

for the corresponding generating functions. Using definition®! (2.30) for §, we find
that po(¢) <> 02 ,¢"*!. By using the binomial series expansion

1 _Oo n+k—1 n
(A.8) (1—54)’@_;0( n )(/J’C)

20This is due to the factorial term stemming from the binomial sums in the estimates (2.32)-
(2.35).

21The definition of § as maximum error for n € {0,..., N} can be extended to n € N, as the error
values for n > N do not matter and can be set to zero.
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for k>0 and the Newton binomial sum, we obtain for the three block iterations

(A.9) (PBL1):  pi(C) <dak¢ Z(“*’;’ _1>ﬁ"C”+’“] [Zcﬂ,
Ln=0 n=0
[k n 00
_ . k k g n n
(A.10) (PBL2):  pi(C) < 5v¥¢ ZB (n> (7> ¢ ] L;g‘ ] ,
(A.11) (PBL3):  pi(Q) <67*¢ | (H:_l)ﬁ%"] lZﬁ"]~
Ln=0 n=0

Error bound for PBI-1. We simplify the expression using

(e =[5 (e

n=0

and then the series product formula

(A.13) [i anC"] [i bng‘"] = icng”, Cn :iaibn,i,
n=0 n=0 n=0 =0

with b, =1 and

0if n<k,
A.14 "= 1
( ) ¢ (n )ﬁ" k otherwise.
n—k

From this we get

(A.15) cn i(j:}c>ﬂknzk(’é+]z_ >512H1 } H—l :

i=k =0

using the convention that the product reduces to one when there are no terms in it.
Identifying coeflicients in the power series and rearranging terms yields for k£ >0

k n—kk—1

(A.16) (PBL-1): ek, < 5ﬁ S TG +0s

T =0 I=1

Following an idea by Gander and Hairer [21], we can also consider the error recurrence

ﬁfﬁ < aek + Beft1) 3 =max(1,3). Using the upper bound Y 7 OC” = C < ﬁc’

for the initial error, we avoid the series product and get p;.(¢) < da W as bound
on the generating function. We then obtain the simpler error bound

(A.17) ek < 5f5” ’“H n+1-1)

as in the proof of [21, Thm. 1].
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Error bound for PBI-2. We use (A.13) again with b, =1 to get

(A.18) - (z) (:)n ifn <k,

0 otherwise.

From this we get ¢, = Z?;ig("’k) (’f) (%) , which yields for k£ > 0 the error bound

S +a) itk <n,
(A.19) (PBI-2): efiy, < ’“Z( ) (> otherwise,

Error bound for PBI-3. We use (A.13) with b,, =1 for the series product to get

-1 i+l
(a20) o= (") 2D
which yields the error bound
& n k—1 _
(A.21) (PBI-3): ¢k, < 5(13- ol ZO H(z‘ + )

for k> 0.

A.2. Full primary block iteration. We now consider a primary block iteration
(2.13) with all block operators nonzero,

(A.22) (PBI-Full):  wlt] =B (uf ) +Bf (ub™) + BY (ul),
with «, 8, and v defined in (A.4). Applying Lemma 2.7 leads to

k
(2) w0500 = 0= (E5) wio.

Combining the calculations performed for PBI-2 and PBI-3, we obtain

(A.24) pr(¢) <6¢H* [Zk: <z) <3)"Cn [i (n+s ! 1) Bncn] [24"]

o B ERCT)]

Then using (A.13) with

wz aw{() () e ﬁfC+k‘ﬁ ,

0 otherwise, i=0

we obtain

min(n,k) n—i I+k—1 i
(A27)  pul <5C7chnC” with ¢, = Z Z( )( )(7> B

1=0 =0
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From this we can identify the error bound

min(n,k) n—i i
EN (l+k—-1 Q
(A.28) (PBLFRull): b, <oyt S 3 (Z) ( z ) () 5.

the

v

i=0 =0
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