001020596 001__ 1020596
001020596 005__ 20240709082056.0
001020596 037__ $$aFZJ-2024-00291
001020596 041__ $$aEnglish
001020596 1001_ $$0P:(DE-Juel1)162243$$aDurmus, Yasin Emre$$b0$$eCorresponding author
001020596 1112_ $$a3RD INTERNATIONAL ZINC-AIR AND OTHER ZINC BATTERIES WORKSHOP$$cUlm$$d2023-09-18 - 2023-09-19$$gIZABW 2023$$wGermany
001020596 245__ $$aImproved Electrochemical Performance of Zinc Anodes by Electrolyte Additives in Near-Neu-tral Zinc-Air Batteries
001020596 260__ $$c2023
001020596 3367_ $$033$$2EndNote$$aConference Paper
001020596 3367_ $$2BibTeX$$aINPROCEEDINGS
001020596 3367_ $$2DRIVER$$aconferenceObject
001020596 3367_ $$2ORCID$$aCONFERENCE_POSTER
001020596 3367_ $$2DataCite$$aOutput Types/Conference Poster
001020596 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1705036525_2554$$xAfter Call
001020596 520__ $$aMetal-air batteries are considered up-and-coming electrochemical energy storage technolo-gies due to possessing very high theoretical energy densities while utilizing cost-effective, safe, and abundant materials. Among various possible configurations, zinc-based metal-air batteries are one of the most advanced for primary and secondary applications. Although primary Zinc-air batteries (ZABs) have been commercially available for various applications, secondary bat-teries have faced challenges, especially in alkaline media. In this regard, employing aqueous neutral electrolytes brings several advantages, such as suppressed carbonization of the elec-trolyte and dendrite formation. However, the performance of such ZABs with neutral electro-lytes can be hindered by the passivation of the zinc surface, the formation of insoluble zinc species, and corrosion.The objective of the present work is to evaluate the influence of Ethylenediaminetetraacetic acid (EDTA) electrolyte additive on the performance of near-neutral secondary Zn-air batteries. The electrochemical behaviour of Zn electrodes was investigated in 2M NaCl (pH 10) solutions with and without EDTA additive. Initially, open-circuit and potentiodynamic polarization exper-iments were conducted to extract the corrosion parameters of the Zn electrodes. The interme-diate-term (24 h) discharge experiments were performed under current densities of 0.1, 0.25, 0.5, and 1 mA/cm2 in a three-electrode half-cell setup. These electrochemical measurements confirmed that Zn is only partially active in neat 2M NaCl electrolytes. However, it could still be discharged up to 1 mA/cm2 at discharge potentials around −1.0 VAg/AgCl. In order to study the dissolution behaviour and the discharge products, the surface of the electrodes was further characterized by a laser scanning microscope (LSM), X-ray diffraction (XRD), and scanning electron microscope (SEM) upon discharge experiments. The performance of full-cell Zn-air batteries was then evaluated in galvanostatic discharge experiments (in primary-mode) up to 930 h with specific energies up to 840 Wh/kgZn and in galvanostatic cycling experiments (in secondary mode) up to 575 h with 70 cycles. In comparison to neat electrolytes, the addition of EDTA to the electrolyte results in enhanced specific energies and mass utilization efficien-cies of near-neutral zinc-air batteries.
001020596 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001020596 7001_ $$0P:(DE-Juel1)174488$$aMontiel Guerrero, Saul Said$$b1
001020596 7001_ $$0P:(DE-Juel1)164430$$aDzieciol, Krzysztof$$b2
001020596 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b3
001020596 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b4
001020596 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b5$$ufzj
001020596 909CO $$ooai:juser.fz-juelich.de:1020596$$pVDB
001020596 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162243$$aForschungszentrum Jülich$$b0$$kFZJ
001020596 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174488$$aForschungszentrum Jülich$$b1$$kFZJ
001020596 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164430$$aForschungszentrum Jülich$$b2$$kFZJ
001020596 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b3$$kFZJ
001020596 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b4$$kFZJ
001020596 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b5$$kFZJ
001020596 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b5$$kRWTH
001020596 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001020596 9141_ $$y2023
001020596 920__ $$lyes
001020596 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
001020596 980__ $$aposter
001020596 980__ $$aVDB
001020596 980__ $$aI:(DE-Juel1)IEK-9-20110218
001020596 980__ $$aUNRESTRICTED
001020596 981__ $$aI:(DE-Juel1)IET-1-20110218