001020601 001__ 1020601
001020601 005__ 20250203103104.0
001020601 0247_ $$2doi$$a10.1016/j.buildenv.2023.110805
001020601 0247_ $$2ISSN$$a0360-1323
001020601 0247_ $$2ISSN$$a1873-684X
001020601 0247_ $$2WOS$$aWOS:001078902600001
001020601 037__ $$aFZJ-2024-00296
001020601 082__ $$a690
001020601 1001_ $$0P:(DE-Juel1)174343$$aDerbas, Ghadeer$$b0$$eCorresponding author
001020601 245__ $$aAssessment of automated shading systems’ utilization and environmental performance: An experimental study
001020601 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2023
001020601 3367_ $$2DRIVER$$aarticle
001020601 3367_ $$2DataCite$$aOutput Types/Journal article
001020601 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738570326_21855
001020601 3367_ $$2BibTeX$$aARTICLE
001020601 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001020601 3367_ $$00$$2EndNote$$aJournal Article
001020601 520__ $$aThis paper presents an experimental study conducted in a full-scale test cell ‘‘btga-box’’ from July until September 2020 at Wuppertal University, Germany. This study focused on evaluating occupant interaction and satisfaction with automated shading systems in office environments, and the underlying thermal and visual conditions under different scenarios to optimize automated shading design and operation for improving occupant comfort and energy efficiency. Six different scenarios were evaluated using several performance metrics. Twenty-eight participants of varying ages, gender, and ethnicity took part in the experiments. After each scenario, the participants were asked to complete a web-based questionnaire to report their behaviour, their perceived thermal and visual comfort, satisfaction, and preferences concerning the performance of automated shading controls. Concurrently, indoor environmental parameters, weather data, and system and user-triggered actions were recorded. The key findings of this study suggest that a robust shading system (i.e., few override actions) can be achieved by: deploying a multi-objective control strategy with an intermediate position, an acceptable range of irradiance thresholds, and a decent level of other adaptive behavioural control options (i.e., window opening, fan usage, and light control). Providing active cooling or ventilation systems (i.e., operable windows, exhaust ventilation, and ceiling fan) can improve user satisfaction with the indoor environment, including shade operation. Using a small window size combined with a high irradiance shade-lowering threshold decreased the user-raising actions by 49% compared to the low threshold. However, energy implications should be considered for further studies since user satisfaction with blind control should be balanced with energy efficiency.
001020601 536__ $$0G:(DE-HGF)POF4-1123$$a1123 - Smart Areas and Research Platforms (POF4-112)$$cPOF4-112$$fPOF IV$$x0
001020601 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001020601 65027 $$0V:(DE-MLZ)SciArea-250$$2V:(DE-HGF)$$aOthers$$x0
001020601 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
001020601 7001_ $$00000-0002-4091-2392$$aVoss, Karsten$$b1
001020601 773__ $$0PERI:(DE-600)1481962-4$$a10.1016/j.buildenv.2023.110805$$gVol. 244, p. 110805 -$$p110805 -$$tBuilding and environment$$v244$$x0360-1323$$y2023
001020601 8564_ $$uhttps://juser.fz-juelich.de/record/1020601/files/derbasvoss2023.pdf$$yRestricted
001020601 8564_ $$uhttps://juser.fz-juelich.de/record/1020601/files/derbasvoss2023.gif?subformat=icon$$xicon$$yRestricted
001020601 8564_ $$uhttps://juser.fz-juelich.de/record/1020601/files/derbasvoss2023.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001020601 8564_ $$uhttps://juser.fz-juelich.de/record/1020601/files/derbasvoss2023.jpg?subformat=icon-180$$xicon-180$$yRestricted
001020601 8564_ $$uhttps://juser.fz-juelich.de/record/1020601/files/derbasvoss2023.jpg?subformat=icon-640$$xicon-640$$yRestricted
001020601 909CO $$ooai:juser.fz-juelich.de:1020601$$pVDB
001020601 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174343$$aForschungszentrum Jülich$$b0$$kFZJ
001020601 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1123$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x0
001020601 9141_ $$y2024
001020601 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
001020601 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBUILD ENVIRON : 2022$$d2023-10-21
001020601 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
001020601 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
001020601 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
001020601 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
001020601 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
001020601 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
001020601 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-21
001020601 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bBUILD ENVIRON : 2022$$d2023-10-21
001020601 920__ $$lyes
001020601 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
001020601 980__ $$ajournal
001020601 980__ $$aVDB
001020601 980__ $$aI:(DE-Juel1)IEK-10-20170217
001020601 980__ $$aUNRESTRICTED
001020601 981__ $$aI:(DE-Juel1)ICE-1-20170217