001020603 001__ 1020603
001020603 005__ 20240226075313.0
001020603 0247_ $$2doi$$a10.2139/ssrn.4492766
001020603 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-00298
001020603 037__ $$aFZJ-2024-00298
001020603 082__ $$a610
001020603 1001_ $$0P:(DE-HGF)0$$aTang, Angela C. I.$$b0$$eCorresponding author
001020603 245__ $$aDetection and Attribution of an Anomaly in Terrestrial Photosynthesis in Europe During the Covid-19 Lockdown
001020603 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2023
001020603 3367_ $$2DRIVER$$aarticle
001020603 3367_ $$2DataCite$$aOutput Types/Journal article
001020603 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1704971041_3514
001020603 3367_ $$2BibTeX$$aARTICLE
001020603 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001020603 3367_ $$00$$2EndNote$$aJournal Article
001020603 520__ $$aCarbon dioxide (CO2) uptake by plant photosynthesis, referred to as gross primary production (GPP) at the ecosystem level, is sensitive to environmental factors, including pollutant exposure, pollutant uptake, and changes in the scattering of solar shortwave irradiance (SWin) − the energy source for photosynthesis. The 2020 spring lockdown due to COVID-19 resulted in improved air quality and atmospheric transparency, providing a unique opportunity to assess the impact of air pollutants on terrestrial ecosystem functioning. However, detecting these effects can be challenging as GPP is influenced by other meteorological drivers and management practices. Based on data collected from 44 European ecosystem-scale CO2 flux monitoring stations, we observed significant changes in spring GPP at 34 sites during 2020 compared to 2015–2019. Among these, 14 sites showed an increase in GPP associated with higher SWin, 10 sites had lower GPP linked to atmospheric and soil dryness, and seven sites were subjected to management practices. The remaining three sites exhibited varying dynamics, with one experiencing colder and rainier weather resulting in lower GPP, and two showing higher GPP associated with earlier spring melts. Analysis using the regional atmospheric chemical transport model (LOTOS-EUROS) indicated that the ozone (O3) concentration remained relatively unchanged at the research sites, making it unlikely that O3 exposure was the dominant factor driving the primary production anomaly. In contrast, SWin increased by 9.4 % at 36 sites, suggesting enhanced GPP possibly due to reduced aerosol optical depth and cloudiness. Our findings indicate that air pollution and cloudiness may weaken the terrestrial carbon sink by up to 16 %. Accurate and continuous ground-based observations are crucial for detecting and attributing subtle changes in terrestrial ecosystem functioning in response to environmental and anthropogenic drivers.
001020603 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001020603 588__ $$aDataset connected to CrossRef
001020603 7001_ $$aFlechard, Christophe R.$$b1
001020603 7001_ $$aArriga, Nicola$$b2
001020603 7001_ $$aPapale, Dario$$b3
001020603 7001_ $$aStoy, Paul. C.$$b4
001020603 7001_ $$aBuchmann, Nina$$b5
001020603 7001_ $$aCuntz, Matthias$$b6
001020603 7001_ $$aDouros, John$$b7
001020603 7001_ $$aFares, Silvano$$b8
001020603 7001_ $$aKnohl, Alexander$$b9
001020603 7001_ $$aŠigut, Ladislav$$b10
001020603 7001_ $$aSimioni, Guillaume$$b11
001020603 7001_ $$aTimmermans, Renske$$b12
001020603 7001_ $$aGrünwald, Thomas$$b13
001020603 7001_ $$aIbrom, Andreas$$b14
001020603 7001_ $$aLoubet, Benjamin$$b15
001020603 7001_ $$aMammarella, Ivan$$b16
001020603 7001_ $$aBelelli Marchesini, Luca$$b17
001020603 7001_ $$aNilsson, Mats B.$$b18
001020603 7001_ $$aPeichl, Matthias$$b19
001020603 7001_ $$aRebmann, Corinna$$b20
001020603 7001_ $$0P:(DE-Juel1)144420$$aSchmidt, Marius$$b21
001020603 7001_ $$aBernhofer, Christian$$b22
001020603 7001_ $$aBerveiller, Daniel$$b23
001020603 7001_ $$aCremonese, Edoardo$$b24
001020603 7001_ $$aEl-Madany, Tarek S.$$b25
001020603 7001_ $$aGharun, Mana$$b26
001020603 7001_ $$aGianelle, Damiano$$b27
001020603 7001_ $$aHörtnagl, Lukas$$b28
001020603 7001_ $$aRoland, Marilyn$$b29
001020603 7001_ $$aVarlagin, Andrej$$b30
001020603 7001_ $$aFu, Zheng$$b31
001020603 7001_ $$aHeinesch, Bernard$$b32
001020603 7001_ $$aJanssens, Ivan A.$$b33
001020603 7001_ $$aKowalska, Natalia$$b34
001020603 7001_ $$aDušek, Jiří$$b35
001020603 7001_ $$0P:(DE-HGF)0$$aGerosa, Giacomo$$b36
001020603 7001_ $$0P:(DE-HGF)0$$aMölder, Meelis$$b37
001020603 7001_ $$0P:(DE-HGF)0$$aTuittila, Eeva-Stiina$$b38
001020603 7001_ $$0P:(DE-HGF)0$$aLoustau, Denis$$b39
001020603 773__ $$0PERI:(DE-600)1498726-0$$a10.1016/j.scitotenv.2023.166149$$p1-14 / 166149$$tThe science of the total environment$$v903$$x0048-9697$$y2023
001020603 8564_ $$uhttps://juser.fz-juelich.de/record/1020603/files/1-s2.0-S0048969723047745-main.pdf$$yOpenAccess
001020603 8564_ $$uhttps://juser.fz-juelich.de/record/1020603/files/final%20manuscript.docx$$yOpenAccess
001020603 8564_ $$uhttps://juser.fz-juelich.de/record/1020603/files/supporting%20information.docx$$yRestricted
001020603 8564_ $$uhttps://juser.fz-juelich.de/record/1020603/files/1-s2.0-S0048969723047745-main.gif?subformat=icon$$xicon$$yOpenAccess
001020603 8564_ $$uhttps://juser.fz-juelich.de/record/1020603/files/1-s2.0-S0048969723047745-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001020603 8564_ $$uhttps://juser.fz-juelich.de/record/1020603/files/1-s2.0-S0048969723047745-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001020603 8564_ $$uhttps://juser.fz-juelich.de/record/1020603/files/1-s2.0-S0048969723047745-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001020603 909CO $$ooai:juser.fz-juelich.de:1020603$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001020603 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-19
001020603 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-19
001020603 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-19
001020603 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-19
001020603 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-19
001020603 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2023-08-19
001020603 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSCI TOTAL ENVIRON : 2022$$d2023-08-19
001020603 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-19
001020603 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
001020603 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001020603 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-19
001020603 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI TOTAL ENVIRON : 2022$$d2023-08-19
001020603 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-19
001020603 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-19
001020603 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-19$$wger
001020603 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-19
001020603 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aISBA$$b0
001020603 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144420$$aForschungszentrum Jülich$$b21$$kFZJ
001020603 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001020603 9141_ $$y2023
001020603 920__ $$lyes
001020603 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
001020603 980__ $$ajournal
001020603 980__ $$aVDB
001020603 980__ $$aUNRESTRICTED
001020603 980__ $$aI:(DE-Juel1)IBG-3-20101118
001020603 9801_ $$aFullTexts