001     1020603
005     20240226075313.0
024 7 _ |2 doi
|a 10.2139/ssrn.4492766
024 7 _ |2 datacite_doi
|a 10.34734/FZJ-2024-00298
037 _ _ |a FZJ-2024-00298
082 _ _ |a 610
100 1 _ |0 P:(DE-HGF)0
|a Tang, Angela C. I.
|b 0
|e Corresponding author
245 _ _ |a Detection and Attribution of an Anomaly in Terrestrial Photosynthesis in Europe During the Covid-19 Lockdown
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2023
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1704971041_3514
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Carbon dioxide (CO2) uptake by plant photosynthesis, referred to as gross primary production (GPP) at the ecosystem level, is sensitive to environmental factors, including pollutant exposure, pollutant uptake, and changes in the scattering of solar shortwave irradiance (SWin) − the energy source for photosynthesis. The 2020 spring lockdown due to COVID-19 resulted in improved air quality and atmospheric transparency, providing a unique opportunity to assess the impact of air pollutants on terrestrial ecosystem functioning. However, detecting these effects can be challenging as GPP is influenced by other meteorological drivers and management practices. Based on data collected from 44 European ecosystem-scale CO2 flux monitoring stations, we observed significant changes in spring GPP at 34 sites during 2020 compared to 2015–2019. Among these, 14 sites showed an increase in GPP associated with higher SWin, 10 sites had lower GPP linked to atmospheric and soil dryness, and seven sites were subjected to management practices. The remaining three sites exhibited varying dynamics, with one experiencing colder and rainier weather resulting in lower GPP, and two showing higher GPP associated with earlier spring melts. Analysis using the regional atmospheric chemical transport model (LOTOS-EUROS) indicated that the ozone (O3) concentration remained relatively unchanged at the research sites, making it unlikely that O3 exposure was the dominant factor driving the primary production anomaly. In contrast, SWin increased by 9.4 % at 36 sites, suggesting enhanced GPP possibly due to reduced aerosol optical depth and cloudiness. Our findings indicate that air pollution and cloudiness may weaken the terrestrial carbon sink by up to 16 %. Accurate and continuous ground-based observations are crucial for detecting and attributing subtle changes in terrestrial ecosystem functioning in response to environmental and anthropogenic drivers.
536 _ _ |0 G:(DE-HGF)POF4-2173
|a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Flechard, Christophe R.
|b 1
700 1 _ |a Arriga, Nicola
|b 2
700 1 _ |a Papale, Dario
|b 3
700 1 _ |a Stoy, Paul. C.
|b 4
700 1 _ |a Buchmann, Nina
|b 5
700 1 _ |a Cuntz, Matthias
|b 6
700 1 _ |a Douros, John
|b 7
700 1 _ |a Fares, Silvano
|b 8
700 1 _ |a Knohl, Alexander
|b 9
700 1 _ |a Šigut, Ladislav
|b 10
700 1 _ |a Simioni, Guillaume
|b 11
700 1 _ |a Timmermans, Renske
|b 12
700 1 _ |a Grünwald, Thomas
|b 13
700 1 _ |a Ibrom, Andreas
|b 14
700 1 _ |a Loubet, Benjamin
|b 15
700 1 _ |a Mammarella, Ivan
|b 16
700 1 _ |a Belelli Marchesini, Luca
|b 17
700 1 _ |a Nilsson, Mats B.
|b 18
700 1 _ |a Peichl, Matthias
|b 19
700 1 _ |a Rebmann, Corinna
|b 20
700 1 _ |0 P:(DE-Juel1)144420
|a Schmidt, Marius
|b 21
700 1 _ |a Bernhofer, Christian
|b 22
700 1 _ |a Berveiller, Daniel
|b 23
700 1 _ |a Cremonese, Edoardo
|b 24
700 1 _ |a El-Madany, Tarek S.
|b 25
700 1 _ |a Gharun, Mana
|b 26
700 1 _ |a Gianelle, Damiano
|b 27
700 1 _ |a Hörtnagl, Lukas
|b 28
700 1 _ |a Roland, Marilyn
|b 29
700 1 _ |a Varlagin, Andrej
|b 30
700 1 _ |a Fu, Zheng
|b 31
700 1 _ |a Heinesch, Bernard
|b 32
700 1 _ |a Janssens, Ivan A.
|b 33
700 1 _ |a Kowalska, Natalia
|b 34
700 1 _ |a Dušek, Jiří
|b 35
700 1 _ |0 P:(DE-HGF)0
|a Gerosa, Giacomo
|b 36
700 1 _ |0 P:(DE-HGF)0
|a Mölder, Meelis
|b 37
700 1 _ |0 P:(DE-HGF)0
|a Tuittila, Eeva-Stiina
|b 38
700 1 _ |0 P:(DE-HGF)0
|a Loustau, Denis
|b 39
773 _ _ |0 PERI:(DE-600)1498726-0
|a 10.1016/j.scitotenv.2023.166149
|p 1-14 / 166149
|t The science of the total environment
|v 903
|x 0048-9697
|y 2023
856 4 _ |u https://juser.fz-juelich.de/record/1020603/files/1-s2.0-S0048969723047745-main.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1020603/files/final%20manuscript.docx
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1020603/files/supporting%20information.docx
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1020603/files/1-s2.0-S0048969723047745-main.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1020603/files/1-s2.0-S0048969723047745-main.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1020603/files/1-s2.0-S0048969723047745-main.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1020603/files/1-s2.0-S0048969723047745-main.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1020603
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-HGF)0
|a ISBA
|b 0
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)144420
|a Forschungszentrum Jülich
|b 21
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-217
|1 G:(DE-HGF)POF4-210
|2 G:(DE-HGF)POF4-200
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-2173
|a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|x 0
914 1 _ |y 2023
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2023-08-19
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2023-08-19
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
|d 2023-08-19
915 _ _ |0 StatID:(DE-HGF)1190
|2 StatID
|a DBCoverage
|b Biological Abstracts
|d 2023-08-19
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
|d 2023-08-19
915 _ _ |0 StatID:(DE-HGF)1060
|2 StatID
|a DBCoverage
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2023-08-19
915 _ _ |0 StatID:(DE-HGF)9905
|2 StatID
|a IF >= 5
|b SCI TOTAL ENVIRON : 2022
|d 2023-08-19
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2023-08-19
915 _ _ |0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
|a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
|d 2023-08-19
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b SCI TOTAL ENVIRON : 2022
|d 2023-08-19
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2023-08-19
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2023-08-19
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
|d 2023-08-19
|w ger
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2023-08-19
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21