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Quantum error-correcting (QEC) stabilizer codes enable protection of quantum information against errors
during storage and processing. Simulation of noisy QEC codes is used to identify the noise parameters necessary
for advantageous operation of logical qubits in realistic quantum computing architectures. Typical quantum
error-correction techniques contain intermediate measurements and classical feedback that determine the actual
noisy circuit sequence in an instance of performing the protocol. Dynamical subset sampling enables efficient
simulation of such nondeterministic quantum error-correcting protocols for any type of quantum circuit and
incoherent noise of low strength. As an importance sampling technique, dynamical subset sampling allows one to
effectively make use of computational resources to only sample the most relevant sequences of quantum circuits
in order to estimate a protocol’s logical failure rate with well-defined error bars. We demonstrate the capabilities
of dynamical subset sampling with examples from fault-tolerant (FT) QEC. We show that, in a typical stabilizer
simulation with incoherent Pauli noise of strength p = 10−3, our method can reach a required sampling accuracy
on the logical failure rate with two orders of magnitude fewer samples than direct Monte Carlo simulation.
Furthermore, dynamical subset sampling naturally allows for efficient simulation of realistic multi-parameter
noise models describing faulty quantum processors. It can be applied not only for QEC in the circuit model but
any noisy quantum computing framework with incoherent fault operators including measurement-based quantum
computation and quantum networks.
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I. INTRODUCTION

All quantum hardware inherently suffers from noise and
thus will continue to be far from perfect for the upcom-
ing decades [1]. Today’s physical architectures ranging from
superconducting transmon qubits over photonic systems to
ion trap and neutral atom platforms are suitable to imple-
ment noisy quantum algorithms for storage, communication,
or manipulation of quantum information and quantum sim-
ulation. Investigating the effect of noisy components via
numerical simulation provides a path to practically realize
useful quantum applications, equally important for circuit-
and measurement-based quantum computation [2,3] as well
as quantum networks [4,5].

Quantum algorithms typically consist of sequences of
faulty quantum circuits and measurements, visualized as a tree
structure in Fig. 1(a). Figure 1(b) shows that, crucially, the ef-
fect of random faults occurring in a given circuit is not known
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a priori but can subsequently lead to random measurement
outcomes, which determine the next circuit of the sequence
until the protocol terminates.

Widely used numerical simulation methods that perform
advantageously in certain regimes of physical fault rates are
summarized in Ref. [6]: For direct Monte Carlo sampling, ev-
ery ideal circuit operation is followed by stochastically drawn
fault operators [7,8]. It can be used at relatively large fault
rates. Alternatively, one may exhaustively iterate all possible
fault events and determine if each one leads to failure of the
algorithm. This way, the protocol failure rate can be recon-
structed, which is only feasible at very low physical fault rates
[9,10]. In Ref. [6] the authors introduce a Metropolis-type
technique specific to the surface code to estimate intermediate
to small physical fault rates where convergence and thus a
reliable confidence interval on the result is not guaranteed.

Instead of iterating all possible fault events at low physical
fault rates, one may estimate the effect of noise by selec-
tively sampling faults belonging to distinct subsets in a Monte
Carlo-type procedure using a finite number of samples and
approximately reconstruct failure rates with a finite sampling
uncertainty. This is the concept of subset sampling, which can
be employed for any quantum circuit of a fixed size [11–16].
However, this technique cannot deal with adaptive execution
of noisy quantum circuits, which are typically run sequentially
as part of a quantum algorithm.

A general numerical technique to efficiently simulate pro-
tocols with small physical fault rates as in experiments
today or with expected future improvements on experimental

2643-1564/2024/6(1)/013177(26) 013177-1 Published by the American Physical Society

https://orcid.org/0000-0002-7581-2148
https://orcid.org/0009-0005-5504-9690
https://orcid.org/0000-0002-2813-3097
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.013177&domain=pdf&date_stamp=2024-02-20
https://doi.org/10.1103/PhysRevResearch.6.013177
https://creativecommons.org/licenses/by/4.0/


HEUßEN, WINTER, RISPLER, AND MÜLLER PHYSICAL REVIEW RESEARCH 6, 013177 (2024)

FIG. 1. Protocol illustrations for dynamical subset sampling. (a) Schematic event tree. Purple nodes symbolize individual quantum circuits.
For each circuit one can choose to apply a fault with weight w ∈ N0 (red stars), which increases from left to right. In the vertical direction,
measurement outcomes determine which circuit is run as the next part of a protocol. We assume, for simplicity, that any measurement leads
to a binary decision which circuit is run next. After termination, we check whether a failure has occurred. The fault-free path is highlighted in
green. For applications outside of QEC, multiple fault-free paths might exist. (b) Protocol sampling consists of alternating steps of choosing
a fault subset for the given circuit (“choice”) and evaluating the measurement at the end of that faulty circuit (“outcome”) to determine the
next circuit until the protocol finishes. The choice can be taken at random or by using a diagnostic criterion such as the expected reduction of
uncertainty (ERU) that we propose in Sec. II. Measurement outcomes are stochastically determined by “nature”. (c) Box representation of the
tree in (a) containing circuits C and measurements that cause branchings. The horizontal width of any box, labeled with the fault weight w,
symbolizes its binomial factor Aw . The failure rate lower bound pL is evaluated as the sum over all individual path failure rates (red portion
of lower horizontal edge). The true failure rate is underestimated by at most all boxes that were not explored (yellow), i.e., the cutoff error δ,
which allows calculation of an upper bound to the failure rate pU (red + yellow portion of lower horizontal edge). Both bounds have respective
sampling uncertainties σL/U that are rooted in the sampling uncertainties σi of the branching ratios qi. The fault-free path never leads to failure.
All quantities are introduced in Sec. II. (d) Example of a generic dynamical sequence of two circuits. After measurement of the first two qubits
in the first circuit (blue), either the upper (green) or the lower (orange) circuit is run on the last two qubits depending on the intermediate
measurement result.

capabilities to get reliable estimates of protocol failure rates is
missing.

A. Results summary and paper structure

We introduce dynamical subset sampling as an importance
sampling method to numerically simulate noisy quantum pro-
tocols at low noise strength building on previous works on
subset sampling [11–16]. Dynamical subset sampling allows
one to estimate protocol failure rates from few, most relevant,
fault processes. A well-defined confidence interval on the
failure rate estimator is maintained at all times during the sam-
pling process. When dynamical subset sampling is employed
at a given maximal noise strength p = pmax to obtain a pro-
tocol failure rate estimator p̂(pmax), all values for p → 0 can
be extracted analytically while keeping the confidence interval
on p̂ tight. This is especially useful if the true failure rate p∗ ∝
pt+1 scales to zero fast as p → 0 with t � 1 as for example
in the context of fault-tolerant (FT) quantum error correction
(QEC) [17]. Any noise model consisting of incoherent faults
can be treated via dynamical subset sampling even for circuits
that contain non-Clifford gates. Multiparameter noise models
are included naturally in the subset sampling approach so it

can accommodate the physical processes predominant in the
given hardware architecture [13]. With the python package
qsample [18], we provide an openly accessible numerical
implementation of dynamical subset sampling [19].

This paper is structured as follows. In the remaining part of
this introduction we review the required background of subset
sampling. Next, we outline our dynamical generalization of
the subset sampling technique in Sec. II in the context of
FT QEC. In Sec. III we present illustrative examples on how
dynamical subset sampling can be utilized to obtain failure
rates for GHZ state preparation [20,21] and FT initializa-
tion of a logical qubit in the Steane code via flag circuits
[16,22–26]. Both examples are highly relevant protocols for
FT QEC and have been used in several experiments recently
demonstrating fault-tolerant qubit initialization and stabilizer
readout [27,28]. We conclude and provide an outlook on fu-
ture work in Sec. V.

B. Review: Subset sampling

Direct Monte Carlo (MC) simulations are implemented
numerically by traversing a quantum circuit and deciding with
probability p whether or not to place a fault operator at a
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circuit location [29]. Fault operators are drawn randomly from
a distribution representing the noise model. Repeated realiza-
tions of the noisy quantum circuit (“samples” or “shots”) yield
different output states. The MC estimator for the failure rate is
then given by the number of samples that result in a protocol
failure divided by the total number of samples

p̂ = #protocol failures

#MC samples
. (1)

This is the standard method to investigate QEC code per-
formance where all components are considered noisy. The
handiness of MC comes at the cost of lacking efficiency when
failures happen less frequently, i.e., at lower physical fault
rates p. To illustrate this, observe that for instance at a physical
fault rate of p = 2 × 10−3 in a circuit of g = 50 gates, the
circuit will be sampled without any fault at all (1 − p)g ≈
90% of the time. Provided further knowledge about properties
of the circuit to be simulated, the contrast can become even
more stark. For example, when simulating a fault-tolerant
circuit no single fault can cause a failure so MC sampling
leads to a trivial result (1 − p)50 + 50p(1 − p)50−1 ≈ 99.5%
of the time. When postprocessing of an MC run is needed
to determine if the result is a failure or not, those 99.5% of
all samples would be discarded—a very inefficient strategy
[11,14]. The lower the physical fault rate p → 0 the larger
this ratio of trivial results will become for a given circuit [6].

The number of faults w happening during circuit execution
can be used to uniquely label distinct subsets in the space of
sampled circuits. For sufficiently low physical fault rate p =
pphys the “largest” subset (in terms of sampling probability)
is the 0-fault subset as the above example illustrates. In stark
contrast to direct MC, subset sampling never samples in the
0-fault subset thus saving the more computational resources
the larger the 0-fault subset, i.e., the lower pphys. Within any
w-fault subset, the probability for a specific w fault to occur
is the probability to have exactly w faulty locations pw

phys
multiplied by the probability to have exactly Nc − w nonfaulty
locations (1 − pphys)Nc−w simultaneously. There are (Nc

w ) pos-
sibilities to choose a w-fault so the size of the w-fault subset
is given by the binomial factor

Ac
w(pphys) =

(
Nc

w

)
pw

phys(1 − pphys)Nc−w (2)

where Nc is the number of circuit locations, which can cause
a fault, and w is the fault weight, which we discuss now.
Faults are drawn randomly from a circuit-level Pauli noise
model meaning that all single-qubit gates, two-qubit gates,
initializations and measurements are performed ideally but
followed by a fault operator according to the noise model
under investigation. A fault configuration of weight w belongs
to the w-fault subset where w is the number of faulty locations
in the circuit. The 1-fault subset contains all faults of order
pphys, the 2-fault subset contains all faults of order p2

phys and so
on [30] The fault weight w is different from the Pauli weight
of an operator: the number of qubits on which it has nontrivial
support, i.e., is not the identity I . For example, a X ⊗ Z fault
on a CNOT gate (and all other circuit elements fault-free)
is a 1-weight fault of Pauli weight 2. An illustration of the
subsets is given in Fig. 2. The fault-free subset of a circuit c

FIG. 2. Representation of w-fault subsets for a single circuit.
Whereas direct MC would sample uniformly in the whole w-space
(blue dots, most shots in w = 0) subset sampling selectively deter-
mines the subset failure rates p(w)

fail (ratio of vertical rectangle colored
red) up to a weight cutoff wmax. This is the key motivation for the
subset sampling technique. Here, by splitting the sampling space we
avoid the 0-fault subset by design. The upper and lower bound on
the true failure rate pc differ by the cutoff subsets illustrated by the
yellow rectangle labeled δ and fainting dashed lines for w > wmax.

is the largest when the physical fault rate is below the inverse
number of potentially faulty circuit locations,

Ac
0(pphys) > Ac

1(pphys) ⇔ pphys <
1

Nc + 1
. (3)

The failure rate pc of the circuit is given by the subset
failure rates p(w)

fail for each w-fault subset independently as

pc =
Nc∑

w=0

Ac
w(pphys)p(w)

fail . (4)

Each subset failure rate p(w)
fail can be estimated numerically by

randomly drawing N (w)
SS fault operators of weight w according

to the noise model under investigation and evaluating the ratio
of w-weight-fault realizations that lead to a failure.

Notably, the pphys dependence in Eq. (4) is completely cov-
ered by the binomial factors A, which are known analytically.
The subset failure rates p(w)

fail are independent of the physical
fault rate pphys in this expression. As a consequence, the subset
failure rates only need to be sampled once for a fixed numer-
ical value pphys = pmax, so the physical fault rate is naturally
removed from the sampling in this formalism. The functional
behavior pc(pphys) can be reconstructed analytically after the
sampling, which makes it easy to extract scalings. This is
the major advantage of subset sampling, which becomes even
clearer when we deal with fault-tolerant circuits. A QEC code
with distance d can correct t = 	 d−1

2 
 errors and an FT circuit
can tolerate t faults without failing so that p(w)

fail = 0 ∀w � t .
For the FT d = 3 protocols considered in this paper, we thus
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know that, by the definition of fault tolerance, p(w=0)
fail = 0 and

p(w=1)
fail = 0.

We can bound the true failure rate pc by the sampled subset
failure rates from above and below by assuming either p(w̄)

fail =
0 or p(w̄)

fail = 1 for all w̄ > wmax in the circuit. These bounds on
the true failure rate read

wmax∑
w=0

Aw p(w)
fail � pc �

wmax∑
w=0

Aw p(w)
fail +

≡δ︷ ︸︸ ︷
Nc∑

w=wmax+1

Aw, (5)

where we have simplified the notation of Ac
w(pphys) by Aw

since the circuit c and the physical fault rate are fixed quanti-
ties here. Using the normalization of the binomial distribution,
the cutoff error δ for subset sampling, which is the rightmost
sum in Eq. (5), can be expressed as

δ = δ(pphys) = 1 −
wmax∑
w=0

(
Nc

w

)
pw

phys(1 − pphys)Nc−w. (6)

The bounds in Eq. (5) tighten as pphys goes to zero, sharpening
the advantage of subset sampling over MC at low pphys. For
larger pphys the cutoff wmax needs to be larger in order to
keep the cutoff error δ(pmax) below a desired numerical value
at fixed pphys = pmax. Eventually, a large wmax will require
sampling in a large number of subsets such that employing
direct MC will become the more efficient strategy to obtain
the failure rate.

We now compare the sampling errors in subset sampling
and MC when estimating the failure rate. The sampling error,
i.e., the standard deviation, for MC sampling

εMC ∼
√

p̂(1 − p̂)

NMC
(as NMC → ∞) (7)

falls off slowly when NMC is the number of samples used to
estimate p̂. For subset sampling, the uncertainty stemming
from sampling within a subset analogously reads

ε
(w)
SS ∼

√√√√ p(w)
fail

(
1 − p(w)

fail

)
N (w)

SS

(
as N (w)

SS → ∞)
(8)

where N (w)
SS is the number of samples used to estimate a

single subset failure rate p(w)
fail . These subset sampling errors

are suppressed by the binomial factors for the total sampling
error on the failure rate

εSS =
√√√√wmax∑

w=1

[
Ac

w(pphys)ε(w)
SS

]2
(9)

since the 0-fault subset has the largest binomial factor but
is never sampled (ε(w=0)

SS = 0). The 68%-confidence interval
[ p̂ − ε, p̂ + ε] around the sampled quantity p̂ given above is
called the Wald interval. At extreme but finite subset failure
rates p(w)

fail ≈ 0 or p(w)
fail ≈ 1 it is known that the Wald interval

suffers from erratic behavior in the output variance ε2 when
the numerical input values only change slightly [31,32]. In this
case it is advantageous to use the more stable Wilson interval
instead in order to calculate variances ε2 [33]. More details
are given in Appendix C 2.

FIG. 3. Behavior of the upper and lower bound on the true failure
rate pc for two different weight cutoffs wmax = 1 (solid) and wmax =
2 (dashed) for subset sampling the FT four-qubit GHZ preparation
circuit (inset, see Sec. III B) where failure corresponds to measur-
ing −1 on the auxiliary qubit; The cutoff error δ is determined at
constant pmax. The sampling error εSS (shaded areas around bounds)
is independent of pphys. Upper and lower bounds on the failure rate
tighten when lowering pphys. Uncertainty intervals for direct Monte
Carlo (MC) sampling with at most 1000 shots grow larger when
lowering pphys.

Provided that the binomial factors Ac
w(pphys) in Eq. (9) are

small (which is always the case for low pphys) we need much
fewer samples

∑
w N (w)

SS � NMC to estimate a failure rate with
a given variance using subset sampling compared to direct
MC. When considering circuits with small Nc it might even
be advantageous to exhaustively place all possible 1-faults and
get the exact subset failure rate p(w=1)

fail instead of sampling in
the 1-fault subset. As a result, the subset sampling error ε

(w=1)
SS

vanishes.
The approach can be extended to multiparameter noise

models by distinguishing different physical fault rates in
Eq. (2) and replace Aw → A �w as described in [13]. Fur-
thermore, studies, which have used subset sampling, include
Refs. [12,15] for surface code implementations in ion traps
and Floquet code implementations in superconducting Majo-
rana platforms respectively.

C. Example: Single shot GHZ state preparation

An example for bounds on the failure rate from Eq. (5)
and the combined sampling and cutoff error from Eqs. (6)
and (9) is given in Fig. 3. We show the bounds and errors
for the inset quantum circuit that prepares the four qubit GHZ
state under depolarizing circuit-level noise (see Appendix D)
verified by an additional flag auxiliary qubit [21] (more detail
on this procedure is provided in Sec. III B). Measuring the flag
qubit as −1 is interpreted as a protocol failure in this example.
The tightening upper and lower bounds on the true failure rate
pc(pphys) for low pphys are clearly visible. For larger wmax = 2
the bounds are narrowing faster, equivalently the cutoff error
δ at pphys = pmax = 10−2 is smaller than for wmax = 1. The
sampling errors ε

(w)
SS only depend on the weight w and the

number of samples N (w)
SS ; they are independent of the physical

013177-4



DYNAMICAL SUBSET SAMPLING OF QUANTUM … PHYSICAL REVIEW RESEARCH 6, 013177 (2024)

fault rate, which is not the case for direct MC. In Fig. 3,
the size of the direct MC sampling error grows larger as we
lower pphys while keeping NMC fixed because the relative error
εMC/p̂ ∼ p̂−1/2 as p̂ → 0.

II. DYNAMICAL SUBSET SAMPLING

With dynamical subset sampling (DSS) we present an ap-
proach that extends the capabilities of subset sampling by
including only the most relevant fault-weight subsets when
estimating the failure rate of a nondeterministic quantum pro-
tocol. DSS can be employed to maximize the gain of accuracy
on the failure rate estimator with every shot while maintaining
a well-defined uncertainty interval throughout the simulation.
In the following discussion we do not explicitly distinguish
between the true protocol failure rate p∗ from the numerical
estimator of the failure rate p̂ where there is no danger of
confusion and only stress the difference explicitly when im-
portant.

Executing a quantum protocol P under the influence of
noise can be viewed as running a nondeterministic sequence
C of quantum circuits as an instance of the protocol P , illus-
trated as an event tree in Fig. 1. A single element of C is

Ci = (ci,wi ), (10)

a tuple that specifies a quantum circuit ci and a wi-fault subset.
A subset sampling approach samples a wi-fault subset of a cir-
cuit ci ∈ C run as part of the protocol NCi times and determines
the transition rate

qi ≡ P(Ci → ci+1 | C<i ) (11)

from Ci to a next circuit ci+1 of the sequence given all previous
circuits C<i. Figure 1(c) depicts the sequential branching into
subsets of different relevance in the vertical direction, quan-
tified by the binomial factors A(Ci ) = Aci

wi
and the transition

rates qi in the horizontal direction. The latter have a sam-
pling uncertainty of σi = √

Var(qi ) = √
Vi due to the finite

number of samples [34], given by the Wilson score interval
Vi = NCi qi (1−qi )+1/4

(1+NCi )2 [see Eq. (C12)].
Locally, i.e., at stage i ∈ N, it is impossible to determine

by qubit measurements whether or not the execution of a
circuit ci with fault weight wi will lead to a failure after
execution of the whole sequence C. This is not only because
the particular fault is drawn randomly but also because its
effect on subsequent circuits cannot be determined a priori at
stage i. We may only assume an expected value for a protocol
failure from previous runs of the whole protocol and update
that expectation value dynamically when acquiring additional
information, i.e., recording a measurement result of circuit ci

with weight wi. These transition rates are estimated by a finite
number NCi of observed measurement outcomes of circuit
subsets Ci within the protocol P .

After termination of the whole protocol, one can determine
a posteriori whether a protocol failure has occurred as a result
of the specific faulty circuit sequence that was realized in this
particular shot, symbolized by a red outcome at the end of a
tree path in Fig. 1(c). The factors along this path determine
the total contribution of this single failure event to the overall
failure rate pL. In total, the protocol failure rate is the weighted

sum over all paths Pfail that lead to failures in this tree

pL =
∑
Pfail

∏
i∈Pfail

A(Ci )qi (12)

where ql ≡ P(C�l → FAIL) when l is the length of a path
Pfail.

The quantity pL is a lower bound to the true failure rate p∗
in the sense that we can estimate that

p∗ ∈ [pL − σL, pU + σU ] (13)

lies within a confidence interval of lower and upper bound
estimators pL and pU . Since they are always estimated from a
finite number of shots, we can quantify their sampling uncer-
tainty as

σL/U = √
Var(pL/U ). (14)

We determine our estimator p̂ for the failure rate to lie in the
center between upper and lower bound so that

p̂ ≡ pL + pU

2
. (15)

Note that p̂ = pL would also yield an unbiased estimator (see
Appendix A for details).

The upper bound pU to the true failure rate p∗ can be set
by considering all neglected subsets in a finite tree, illustrated
in Fig. 1(c) as yellow boxes. The worst case error made by
neglecting these subsets is that they all exclusively produce
failures all the time. At any circuit node Ci of the tree, its
cutoff error δCi can be quantified, analogously to Eq. (6), as
the complement of the binomial factors of the non-neglected
subsets like

δCi = 1 −
wi,max∑
wi=0

A(Ci) (16)

[see, for example, the upper right yellow box width in
Fig. 1(c)]. The upper bound pU is then given by adding the
total value of all δCi to the lower bound

pU = pL + δ = pL +
∑
Ci

(
i∏

k=1

A(Ck )qk

)
δCi (17)

where one must take into account the path product that leads
to any δCi in the tree representation of Fig. 1(c).

The variances of pL and pU can be calculated using
standard rules for calculating sums of products of random
variables

Var(pL ) = Var

⎛
⎝∑

Pfail

∏
i∈Pfail

A(Ci )qi

⎞
⎠, (18)

Var(pU ) = Var(pL + δ), (19)

which we lay out explicitly in Appendix B with examples.
The central ingredient here is that two transition rates qi

and q j where one is subsequent to the other in the same
path are uncorrelated, i.e., Cov(qi, q j ) = 0. At the branch-
ings denoted with the measurement symbol in Fig. 1(c), the
branching ratios [35] qi are maximally anticorrelated since
Cov(qi, 1 − qi ) = −Var(qi ).

As mentioned above, it is not a priori clear which specific
circuit sequence will be realized as an instance of the quantum
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protocol for a particular shot due to both the randomness in re-
alizing a particular fault operator and measurement outcomes.
In the following, we suggest two methods how to sensibly
choose a fault-weight subset in any stage i as illustrated in
Fig. 1(b) (and provide more detail in Appendix C 3).

A simple method is to draw a random fault weight wi

according to the distribution of the binomial factors A(Ci ) of
the current circuit ci. For a protocol that produces long circuit
sequences, this method will produce small total fault weights
wtot = ∑

i wi for a single shot if pphys is not too large. If pphys

is also not too small, the resulting wtot of any single shot will
eventually be larger than zero and thus protocol failures can be
expected. For a protocol that consists of just a single circuit or
repeatedly runs the same circuit until the measurement result
is accepted so that faults cannot propagate from one circuit
run to the next, we can exclude drawing the fault-free subset
completely. Note that in principle any distribution can be used
to draw fault operators. In Ref. [15], a presampling step is used
to guess a distribution of most relevant subsets for a single
circuit before actually performing the sampling procedure.

A more sophisticated method systematically decreases the
total uncertainty of the failure rate estimation with each sam-
ple. It relies on the fact that at any point during the sampling
procedure, we can determine expectation values of branching
ratios qi and, thus, failure rates. Now, we may assume how
these expectation values change given one additional sample
in the current stage i when the wi-fault subset is selected to
sample in. Especially, the total estimation uncertainty

η ≡ σL + σU + δ (20)

changes when the subset wi is chosen if either a positive (+)
or a negative (−) measurement outcome would be observed
as a consequence in the next sample. We express the expected
uncertainty after the next sample as the average over the two
possible measurement outcomes qiη|wi→+ + (1 − qi )η|wi→−.
The two expected uncertainties η|wi→± can be calculated by
replacing the respective affected transition rate qi in the tree
like

qi → q±
i =

⎧⎨
⎩
(
qi + 1

NCi

) NCi
NCi +1 , +

qi
NCi

NCi +1 . − (21)

as we show in Appendix C 3 b. We can then choose to sample
in the subset w∗

i where the expected reduction of uncertainty
�(wi ) is maximized (“ERU criterion”) with the next sample
compared to the current state, i.e., the total uncertainty coming
from the currently known event tree

�(wi ) = η − [qiη|wi→+ + (1 − qi )η|wi→−] (22)

w∗
i = argmaxwi

(�(wi )). (23)

It is sufficient to calculate �(wi) for the wi-fault subsets
that are already in the tree (wi = 0, . . . ,wi,max) and the largest
subset yet unsampled (wi = wi,max + 1) since sampling in
this subset will decrease the uncertainty more than any
other higher weight subset, assuming that Aw > Aw+1 ∀w �
0, which is fulfilled for small enough pphys. We consider the
computational cost of this calculation further in Sec. IV.

The full dynamical subset sampling procedure is expressed
in pseudocode in Algorithm 1 and as a flow chart in Fig. 4. The

Algorithm 1. Algorithm to dynamically estimate the failure rate
p∗ of a nondeterministic QEC protocol P including feedback from
classical measurement data using the ERU criterion.

Input: maximum number of samples Nmax or target uncertainty
ηmax, noise model E , maximum noise strength pmax

Output: failure rate confidence interval [pL − σL, pU + σU ]
1: while N < Nmax and η > ηmax do
2: calculate �(wi ) for wi = 0, ...,wi,max + 1
3: set wi ← argmaxwi

(�(wi ))
4: run Ci with wi-fault drawn from E
5: determine ci+1 from measurement outcome of Ci according

to P
6: update branching ratio qi

7: if ci+1 �= “finish” than
8: i ← i + 1 go to next circuit
9: else
10: check for failure
11: update pL, pU , σL and σU

12: N ← N + 1 go to next shot
13: end if
14: end while

numerical values of pL, pU , σL, and σU are obtained at a fixed
value of p = pmax and the regime of low physical fault rates
p̂(p < pmax) is accessible analytically via Eq. (12) because the
dependency on p lies entirely in the binomial factors A(C),

FIG. 4. Circular visualization of the choice-measurement pro-
cess from Fig. 1(b). A single shot of dynamical subset sampling
(DSS) consists of alternating between choosing the next circuit ci

to sample and choosing the fault-weight subset wi to sample this
circuit in. The circuit sequence C is determined by the underlying
protocol P and the stochastic intermediate measurement results. The
fault-weight subset can be chosen according to the binomial factor
criterion or the ERU criterion (see main text). Then a random fault
instance within that subset is drawn uniformly. Repeated execution
of the inner cycle generates circuit sequences C, see Eq. (10), and
the event tree in Fig. 1 by sequentially running circuits that form an
instance of a protocol. A new shot is run if the result of the previous
shot does not lead to a resulting η – the total estimation uncertainty
given in Eq. (20)—below the target uncertainty ηmax or the maximum
number of shots Nmax is not reached yet.
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which themselves do not depend on the sampled transition
rates qi.

In the next section we discuss examples that illustrate the
advantage of dynamical subset sampling over MC simulation
in the context of fault-tolerant quantum error correction.

III. APPLICATION TO PROTOCOLS FOR FT QEC

The numerical simulations in this section have been per-
formed using our new python package qsample [19]. We first
discuss the simple example of a flag circuit to fault-tolerantly
prepare a GHZ state [20,21]. GHZ states are commonly used
as resource states in QEC protocols, e.g., to extract syn-
drome information for fault-tolerant stabilizer measurements
in Shor-type error correction [21,36,37]. As a second example,
we investigate a protocol to fault-tolerantly encode the zero
code word |0〉L in the Steane code via adaptive execution
of either one or more quantum circuits [16,22,24]. The third
example is |0〉L state preparation by sequential stabilizer mea-
surements with flag circuits where up to eight circuits can be
run in total [25,26,38].

In our simulations we apply the standard circuit-level de-
polarizing noise model (see Appendix D). We, however, stress
again that any noise model consisting of incoherent faults can
be covered by dynamical subset sampling even for circuits that
contain non-Clifford gates.

A. Background: Simulating noisy QEC

Using QEC to reduce the occurrence of dangerous faults
that corrupt the quantum data can allow one to push protocol
failure rates below the threshold that enables advantageous
operation of encoded blocks compared to physical qubits [39].
Estimating failure rates on the logical level through stabilizer
simulation [40,41] is a way to evaluate the performance of
stabilizer codes. These performance evaluations are needed
for fault-tolerant quantum error-correcting protocols that may
be used in hardware implementations. The useful operating
regime is below the break-even point where the failure rate
becomes lower than the failure rate of the unencoded qubit
[42]. If this break-even point converges to a finite value in the
infinite system size limit, this is known as the code’s threshold.
Depending on the code and noise model under investigation,
finite thresholds for typical stabilizer codes can—if existent—
range over several orders of magnitude (10−9 to 10−2 faults
per operation) [38]. Thus different numerical techniques may
be employed to find these thresholds, e.g., for common stabi-
lizer codes such as surface codes [43,44], color codes [45,46],
or qLDPC codes [47].

Stabilizer simulations enable the simulation of quantum
codes on classical computers in polynomial time for circuits
that only contain Clifford operations, which is known as the
Gottesman-Knill theorem [41,48]. When investigating noisy
stabilizer codes, efficiently simulating faulty circuit opera-
tions poses numerical challenges beyond circuit depth or large
numbers of qubits due to the large number of MC shots needed
to get reliable failure rate estimators (see Sec. I B).

Here we consider uncorrelated circuit-level Pauli noise in
stabilizer simulations: Pauli fault [49] operators are stochas-
tically placed on all individual circuit elements. The Pauli

matrices form a generator basis of all n-qubit operators that
may act as noise in a realistic quantum processor architecture.
While other noise models such as phenomenological noise
[50,51] or code capacity noise [52] do not take the micro-
scopic details of noisy circuitry for syndrome readout into
account, circuit-level noise captures experimental conditions
more closely because all circuit elements are modelled as
prone to noise [53]. Taking into account the effect of noise
to data qubits only thus cannot be expected to accurately
model experimental conditions (for a summary of various
noise models, see e.g., [54]). We restrict ourselves to uncor-
related circuit-level noise. All types of incoherent noise can
be analyzed in this framework of circuit-level Pauli noise,
e.g., depolarizing noise [7,55,56] or crosstalk [57,58]. Fur-
thermore, non-Clifford noise can be approximated in this way,
e.g., for the amplitude damping channel [59]. To investigate
coherent noise or circuits containing non-Clifford gates full
wavefunction simulations can be employed at the price of
exponentially growing simulation time and memory require-
ments [60,61].

Placing Pauli faults in a quantum circuit stochastically in a
direct Monte Carlo (MC) simulation and determining whether
or not these faults cause logical failure has become the stan-
dard method to obtain failure rates, thresholds and compare
the performance of QEC protocols [7,53]. Recall from Sec. I B
that at low physical fault rates however, direct MC is highly
inefficient since most of the time the ideal fault-free circuit
is sampled (no faults are placed at all). Subset sampling can
obtain high accuracy on failure rates with well-defined error
bars when the circuit is a deterministic sequence of operations
[13,15]. However, common QEC protocols such as Shor-type
error correction or flag fault-tolerant stabilizer readout are
nondeterministic because they make use of intermediate mea-
surement information (“feed forward”) [21,25].

In nondeterministic QEC protocols, these “in-sequence”
measurements determine at runtime which circuit to execute
next. Due to the stochastic nature of quantum measurements
the resulting circuit sequence performed as an instance of the
QEC protocol is not fixed a priori, e.g., for adaptive execution
of state preparation circuits as in [62] or FT QEC cycles as
demonstrated in [27] where the circuits used for syndrome
readout depend on in-sequence measurement information.
Nondeterministic protocols are abundant in QEC. They in-
clude fault-tolerant initialization of logical qubits using flag
schemes [16,24] or teleportation elements where gates, which
are applied conditioned on classical measurement data, play
a role in the implementation of a fault-tolerant universal gate
set [28,63].

In the following, we apply dynamical subset sampling
to nondeterministic QEC with single- and multiparameter
noise models. Multiparameter noise models can distinguish
between different sources of errors and thus provide a more
realistic description of the faulty hardware to simulate, e.g.,
different noise strengths on certain locations, crosstalk [57,58]
or biased Pauli noise [64–69].

B. GHZ state preparation

GHZ states are commonly used resource states in quantum
algorithms, for instance for FT syndrome readout in Shor-type
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FIG. 5. Upper and lower bound on the flag rate for GHZ state
preparation are tight when using subset sampling at pmax = 10−3.
All rates for smaller pphys can be extracted analytically while the
uncertainty intervals of the direct MC estimation grow larger for
smaller pphys.

QEC [21,36,37] or quantum teleportation schemes [70]. The
preparation procedure of a four-qubit GHZ state

|GHZ〉 = |0000〉 + |1111〉√
2

as shown in the inset of Fig. 3 is considered successful when
the flag measurement yields +1. Here the first four gates of
the circuit prepare the state on the upper four qubits while the
fifth qubit is the flag qubit that signals a fault in the preparation
through a −1 measurement result, i.e., when being measured
in the computational |1〉 state. This additional flag qubit verifi-
cation makes the preparation procedure fault-tolerant towards
any 1-weight fault in the circuit (“FT-1”), meaning that given
a +1 measurement result, the prepared state is indeed |GHZ〉
up to a single correctable error unless at least two faults have
happened. However, single faults can lead to a −1 measure-
ment of the flag qubit.

Figure 5 shows the subset sampling estimation of the flag
rate over the range of physical fault rates pphys ∈ [10−4, 10−1].
Subset sampling is performed with 100 shots at pmax = 10−3

and all other values of the failure rate are extracted analyt-
ically. We compare the subset sampling result to direct MC
estimation, where 104 shots are needed for comparable accu-
racy at pmax = 10−3 and relative uncertainties are even larger
for lower values of pphys.

This is also reflected in Fig. 6. This advantage of subset
sampling over direct MC simulation becomes even larger the
lower we choose pmax. For every shot, we choose the most
“relevant” subset via the ERU criterion. The values of the
ERU � for the selected subset w∗ for each shot are plotted
in Fig. 7. Here we observe that the fault-free circuit is chosen
exactly once. After the very first shot there is no improvement
expected from sampling the fault-free circuit. Then the 1-fault
subset is selected repeatedly. The 2-fault subset is only sam-
pled once, in the 21st shot, after the sampling uncertainty in
the 1-fault subset is so small that there is more gain to the over-
all accuracy to reduce the cutoff error by AGHZ

2 . Afterwards, it

FIG. 6. At pmax = 10−3, direct MC (black dotted) needs 104

shots to reach a comparable accuracy as subset sampling (green
solid) after 102 shots. Note that two different horizontal axes are used
in the plot. The total estimation uncertainty (unc.) is similar after the
sampling for both methods but the advantage of DSS over direct MC
is two orders of magnitude in the number of samples.

is again preferential to keep sampling in the 1-fault subset.
When we use the larger pmax = 10−2, we observe in Fig. 8
that the 2-fault subset is chosen more frequently since its
binomial factor is now larger than at pmax = 10−3 and thus the
contribution of the 2-fault subset to the logical failure rate and
the total estimation uncertainty η is deemed more relevant.

C. Deterministic FT state preparation

We now present results on sampling the failure rate of a
protocol [16] to fault-tolerantly and deterministically prepare
the |0〉L state in the Steane code. For our stabilizer simulations

FIG. 7. The ERU criterion, at pmax = 10−3, chooses to open
the next larger fault-weight subset when decreasing the sampling
uncertainty σ does not improve the total uncertainty η more than
decreasing the cutoff error δ.
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FIG. 8. The ERU criterion, at pmax = 10−2, mostly chooses the
1-fault subset. Various times, the 2-fault subset is sampled. The
3-fault subset is chosen once. The larger-weight subsets are more
relevant as compared to Fig. 7 because their binomial factors A2 and
A3 are larger at pmax = 10−2 than at pmax = 10−3.

of the Steane code we use the stabilizer generators

KX
1 = X4X5X6X7 KZ

1 = Z4Z5Z6Z7

KX
2 = X1X3X5X7 KZ

2 = Z1Z3Z5Z7

KX
3 = X2X3X6X7 KZ

3 = Z2Z3Z6Z7, (24)

which are illustrated in Fig. 9, and the according static look
up table decoder. The |0〉L state is prepared fault-tolerantly
in one, two or three steps: first, prepare the state nonfault-
tolerantly and measure the operator Z3Z5Z6 with a single
flag qubit. If the flag qubit is measured as +1, we measure
all data qubits in the Z basis and the protocol terminates.
Otherwise, the stabilizer KZ

1 KZ
2 KZ

3 = Z1Z2Z4Z7 is measured
with a second auxiliary qubit. The correction X7 is applied

if both auxiliary qubits are measured as −1. Then, the state
preparation protocol terminates. We then measure all data
qubits in the Z basis to determine whether a logical failure
has incurred.

Provided that at most a weight-1 fault happens during the
overall protocol, the |0〉L state is prepared correctly up to a
correctable weight-1 error. The result is a logical failure if the
minimum Hamming distance of the measured bitstring m to
the bitstrings that label all eight basis states that make up the
state

|0〉L = 1√
8

(|0000000〉 + |1010101〉 + |0110011〉

+ |1100110〉 + |0001111〉 + |1011010〉
+ |0111100〉 + |1101001〉) (25)

is larger than one. This is possible because all weight-2 Z
errors are of distance 1 to a logical Z operator in the Steane
code.

For an FT protocol, at least two faults are necessary to
cause failure and these faults can happen in different circuits.
We must ensure that our knowledge about subsets that can
never lead to failure is accounted for correctly in the cal-
culation of branching uncertainties σi and the cutoff error
δ. In particular, we must remove all paths of total weight
wtot � 1 from the cutoff error. This can be done by assuming a
maximum sequence length L for such paths (see Appendix B 4
for details). Then, any FT path has a total path product smaller
then LA1(1 − M0) where M0 = minc Ac

0 is the minimal bino-
mial factor at pphys = pmax out of all circuit’s binomial factors
and A1 is the binomial weight of the circuit where a single
fault was realized.

To illustrate dynamical subset sampling for a multi-
parameter noise model, in the following we estimate failure
rates for a two-parameter noise model with �p = (p1, p2)
where p1 is the physical single-qubit gate fault rate and p2

is the physical two-qubit gate fault rate. The binomial factor

FIG. 9. Possible circuit sequences for deterministic FT state preparation of |0〉L in the Steane code (triangle). If the flag (pink connections to
f ) is triggered in step (I), the stabilizer KZ

1 KZ
2 KZ

3 = Z1Z2Z4Z7 is measured (yellow connections to s) in step (II). Then, if the next measurement
also yields −1, the correction X7 is applied as step (III). Otherwise the protocol terminates. At any point of termination, |0〉L is prepared
fault-tolerantly.
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FIG. 10. For the three-step |0〉L state preparation protocol, direct
MC achieves a reasonable estimation for p2 > 10−2 (and p1 > 10−3).
The direct MC estimator lies in between the upper and lower bounds
estimated via subset sampling, which diverge for growing �p. At low
p2 (and p1) however, direct MC records few or no failures after
NMC = 104 shots but the analytical scaling of subset sampling yields
tight uncertainty intervals around the estimated failure rate bounds.

of Eq. (2) is extended by the now two-dimensional vector
�w = (w1, w2) labeling the fault-weight subsets for single-
qubit and two-qubit faults to read

Ac
�w(p1, p2) =

(
N (1)

c

w1

)(
N (2)

c

w2

)
pw1

1 pw2
2

× (1 − p1)N (1)
c −w1 (1 − p2)N (2)

c −w2 (26)

where N (1)
c and N (2)

c are the number of single- and two-qubit
gates in the circuit c respectively. We employ dynamical sub-
set sampling at �pmax = (10−3, 10−2) and choose fault-weight
subsets randomly according to the distribution of binomial
factors as described in Sec. II.

In Fig. 10 we observe that the bounds estimated via dy-
namical subset sampling are tight in the relevant range for the
two parameters p1 < p1,max and p2 < p2,max that are scaled
together uniformly. Due to the quadratic scaling of the fail-
ure rate estimator p̂ ∼ p2

i of the FT protocol, the uncertainty
intervals on the direct MC estimators after a fixed number
of shots at each �p-value are even larger than for the GHZ
state preparation example. At low p1, p2, very few or even
no logical failures are registered anymore by direct MC.

Although the total uncertainty interval η of dynamical sub-
set sampling is comparable to the direct MC interval after 104

shots, as we can see in Fig. 11, we stress that many more MC
shots would be required to use direct MC at lower values than
�pmax while the DSS estimator can be extracted analytically
without taking new shots.

D. Flag-FT stabilizer measurements

Another way to initialize a logical qubit into the Steane
code’s |0〉L state is performing sequential stabilizer measure-
ments utilizing flag fault-tolerant circuits as introduced in
Ref. [26] and recently demonstrated experimentally [27,71].
Here the data qubit state is projected from |0〉⊗7 onto the

FIG. 11. The subset sampling estimator to the logical failure rate
p̂ has an uncertainty interval η (shades of green, solid) composed of
the upper and lower bound sampling uncertainties σ and the cutoff
uncertainty δ. After 10 000 shots at �pmax = (10−3, 10−2), uncertain-
ties are similar for both the direct MC estimation (black dotted)
and dynamical subset sampling. For this example, we drew the fault
weights randomly according to the circuits’ binomial factors.

simultaneous +1-eigenstate of the X stabilizers. The flag pro-
tocol achieves fault-tolerance towards 1-faults (FT-1) through
extending the Steane EC look up table decoder by additional
correction operators that may be applied depending on the
measurement result of flag qubits. An example circuit to fault-
tolerantly read out the KX

1 stabilizer is shown in Fig. 12. A
nontrivial −1 measurement outcome for this stabilizer only
(while KX

2 and KX
3 yield trivial +1 measurements) would

lead to a Z4 Pauli correction (compare inset) that fixes the
KX

1 -eigenspace. Note that the Z stabilizers are already fulfilled
by initializing all data qubits in the |0〉 state. The X -stabilizer
measurements cannot cause uncorrectable weight-2 X errors
without triggering a flag as illustrated in Fig. 12.

The only possible dangerous errors in this scheme fol-
low from faults on the bare readout auxiliary qubits. There,
only Pauli-X faults can spread to the data qubits through the
subsequent CNOT gates used to measure the X stabilizers.
Dangerous faults on the auxiliary qubits that may propagate
to weight-2 errors on the data qubits (and thus break FT-1)
are accounted for by repeating syndrome measurements on
the seven data qubits sequentially using the flag circuits for
KX

1 , KX
2 and KX

3 until one of the following terminating cases
are fulfilled:

(1) In two consecutive rounds a and b, the same syndrome
is observed and no flag was triggered. In this case we apply
the Z-Pauli correction according to the Steane look up table.

(2) In two consecutive rounds a and b, two different syn-
dromes are observed but no flag was triggered. In this case we
run a third round of nonfault-tolerant syndrome readout and
apply the Z-Pauli correction according to the Steane look up
table using the syndrome that is obtained in the third round of
measurement.

(3) At any point a nontrivial flag measurement is observed.
In this case we abort the flag circuit readout procedure and
continue with a full nonfault-tolerant syndrome readout:
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FIG. 12. The stabilizer plaquette KX
1 = X4X5X6X7 of the Steane

code can be readout fault-tolerantly using a measurement auxiliary
qubit and a flag qubit. Dangerous faults may happen on the two
highlighted middle CNOT gates; an example X fault is marked,
which propagates to trigger the flag for causing a weight-2 Pauli
error on the data qubits. In the subsequent nonfault-tolerant stabilizer
readout this weight-2 error results in the syndrome {+1, −1, +1}
and according to case 3(a) of the protocol the correction X6X7 is
(correctly) applied. (Inset) Visualization of the qubits that belong to
the red plaquette K1 of the Steane code [according to Eqs. (24)] and
the syndrome readout qubit s, which is connected to the four data
qubits (yellow) and the flag qubit f , which is only connected to s
(pink).

(a) If there exists an X error that is caused by one fault
that triggers a flag and agrees with the observed syndrome
we apply the X error a second time to correct it. (The set of
all errors caused by one fault that triggers the flag is called
the flag error set, see example in Fig. 12.)

(b) If no such X error exists we apply the Z-Pauli
correction according to the Steane look up table.
The longest possible circuit sequence that may result from

applying this protocol is drawn in Fig. 13. Actual instances of
the noisy protocol can be much shorter: for instance, when
the first circuit flags (“KX

1,fa
”), we will directly continue to

run the non-FT syndrome extraction circuit (“KXZ
nf ”) and the

protocol terminates. The branching events in this protocol are
determined by the measurement outcomes of the current flag
circuit: Either the next flag circuit is run or one jumps ahead to
the non-FT syndrome readout (“KXZ

nf ”). The variety of branch-
ing options makes dynamical subset sampling suitable to
effectively explore subsets that contribute most significantly
to the overall failure rate. Low-weight subsets are sampled
preferentially by choosing the fault weights, again, randomly
according to the distribution of their binomial factors.

Figure 14 shows that the direct MC estimator lies in be-
tween the DSS bounds, which diverge for large pphys. Since
the failure rate scales quadratically p̂ ∼ p2

phys as pphys → 0,
direct MC cannot produce reliable estimations at low pphys

with NMC = 104 shots. Dynamical subset sampling is used
at pmax = 10−3 and yields upper and lower bounds on the
true failure rate of the flag-FT protocol that do not diverge
as pphys → 0 with the same number of shots. The bound is
not as tight as for the previous protocols. This indicates that
paths, which are not realized by employing the binomial factor
criterion in the sampling procedure and are thus contained in
the cutoff error δ, have a relatively large product of binomial
factors, given the chosen pphys. Additionally, we assume a
maximum FT path length L = 8 (6 flag circuits + 1 syndrome
readout circuit + 1 circuit that contains only noisy measure-
ments of all data qubits) in our simulations, which can lead to
an overestimation of the upper bound (see Appendix B 4 for
details). As a result of fixing L = 8, we might overestimate the
relevance of long circuit sequences to the cutoff error δ if, at a

FIG. 13. Longest possible circuit sequence that may occur when using the flag fault-tolerant protocol to encode the |0〉L state. RGB-colored
boxes mark the respective Steane code plaquette Kσ

i readout with a flag circuit (.f) or a nonflag circuit (.nf). Whenever the flag qubit (qubit
number 9, protocol case 3) is measured as −1 or whenever two consecutive flagged measurements of the same stabilizers Kσ

i,fa
and Kσ

i,fb

disagree (qubit number 8, protocol case 2), the circuit run is interrupted and continues at the yellow boxed circuit. The nonfault-tolerant
syndrome measurement (dashed yellow box “KX Z

nf ”) in the end is only omitted if all six previous stabilizer readouts agree and no flag has been
triggered (protocol case 1).
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FIG. 14. Logical failure rate estimation for the state preparation
protocol via flag-FT stabilizer measurements. Although a relatively
large cutoff error remains at pmax = 10−3, the total uncertainty on p̂
stays bound as pphys → 0. The direct MC estimators are practically
useless in this regime due to too few shots or, equivalently, logical
failure rates being too low for the limited number of NMC = 104

shots. The cutoff error can be reduced by increasing pmax as in
Fig. 26.

given pmax, the typical sequence length is much shorter. Both
aspects are not fundamental problems of dynamical subset
sampling but can be improved in a future version of qsample
(and we show a tighter bound obtained from sampling at larger
pphys in Appendix E).

IV. REMARKS ON EFFICIENCY AND RUN TIME

Dynamical subset sampling requires fewer shots than di-
rect Monte Carlo simulation (and can thus be considered more
efficient) when, analogous to Eq. (3), the paths that never lead
to failure have the largest weight at a given pmax and/or these
paths can be excluded by a suitable choice criterion.

DSS does not limit the execution time beyond the intrin-
sic limitations of the used stabilizer or statevector simulator
backend and the length of the protocol sequence.

Calculation of the total estimation uncertainty η from a
large event tree might take a relatively long time compared
to running a single shot of a protocol. Parallelization of the
sampling procedure for dynamical subset sampling can be
employed twofold: Firstly, during the numerical evaluation
of the expected reduction of uncertainty �(wi) at any stage
i within the protocol, one may continue to run further DSS
shots, using the subset choices from a previous ERU evalua-
tion or the binomial factor criterion, in order to keep lowering
the sampling uncertainty, while waiting for the ERU criterion
to testify. Secondly, the evaluations of �(wi ) at stage i can
themselves be parallelized for each of the wi,max + 1 subsets
under consideration and also for both the assumed positive or
negative measurement outcome to be probed. Anyways, for
practical use of DSS, any wi,max should be relatively small.

V. CONCLUSIONS AND OUTLOOK

In this paper we have presented an importance sam-
pling technique to efficiently estimate failure rates with
well-defined error bars for QEC protocols with in-sequence
measurements that make the realized circuit sequence non-
deterministic while suffering from incoherent noise at low
physical fault rates. Our dynamical subset sampling technique
allows for a significant reduction in the number of samples
needed to achieve a given accuracy on the estimated fail-
ure rate compared to direct Monte Carlo sampling. It can
take dependencies between circuits that typically occur in
QEC protocols, i.e., circuit execution conditioned on a mea-
surement result, into account. The examples provided allow
insight into useful modes of operation for dynamical subset
sampling. The first is to avoid the need for post-selecting
on a specific measurement result. All circuit sequences re-
sulting from any measurement result can be accounted for.
The second is to avoid sampling fault-free circuits, which
does not provide useful information but takes up most of the
computational resources in direct Monte Carlo simulation at
low physical fault rates. In order to choose which fault-weight
subset we should sample, we introduce two criteria.

While they proved effective for the examples provided in
this paper, it is worth exploring whether sampling efficiency
could be increased even further, e.g., by introducing a more
elaborate criterion. For instance, it would be interesting to ex-
plore the possibility to let an artificial neural network choose
fault-weight subsets with a cost function that punishes sam-
pling fault-free or fault-tolerant paths but rewards sampling
low-weight paths that can in fact cause failure of a protocol.
On a more speculative note, one may be able to employ non-
Markovian sampling algorithms that are specifically designed
to sample in a nonuniform energy landscape. In a manner
similar to simulated annealing [72], fault-weight subsets could
be chosen such that deviating just little from the fault-free or
fault-tolerant paths is preferential over large fluctuations.

The need for efficient simulation techniques of protocols
with intermediate branching options becomes evident in the
light of progressing fault-tolerant quantum hardware realiza-
tions [27,28,73]. Further study on dynamical subset sampling
should include protocols that can have multiple fault-free
paths instead of just one. Furthermore, the bound used for
the FT cutoff error can be improved by, instead of using
the maximum FT sequence length L, inferring the longest
possible “rest of sequence” l � L that can still be run at any
given point of an individual sample. Also, we conjecture that a
generalization of the FT cutoff error to QEC codes of arbitrary
distance is possible by straightforward combinatorics.

All codes used for data analysis are available from the
corresponding author upon reasonable request.

The python package qsample, which was used to generate
all data in this manuscript, is publicly available at GitHub
[18]. Within the documentation, also accessible via GitHub
[19], we provide a tutorial on how to use qsample for mod-
eling quantum protocols and determine failure rates by means
of dynamical subset sampling and direct Monte Carlo simula-
tion. The protocols for the examples of Sec. III are also given
therein.
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APPENDIX A: BIAS OF THE PROTOCOL ESTIMATOR

Subset sampling yields unbiased estimators of protocol
failure rates, as we state for Eq. (15), in the following sense.
Consider as the bias the difference between the expectation
value obtained by an estimator p̂ and the true value p∗ of the
failure rate. The bias of p̂ to p∗ [74] is

Bias( p̂, p∗) = ETree( p̂) − p∗ = ETree

(
pL + pU

2

)
− p∗

= ETree

(
pL + δ

2

)
− p∗ (A1)

where ETree(.) denotes the expectation value deduced from an
event tree created by running a finite number of samples. For
a single circuit c and a single noise parameter pphys, we can
explicitly plug in Eqs. (4) and (6) to express the bias as

Bias( p̂, p∗) =
wmax∑
w=1

Ac
w(pphys) p̂(w)

fail + 1

2

(
1 −

wmax∑
w=0

Ac
w(pphys)

)

− p∗ → 0. (A2)

In the limit of large numbers of shots in every subset, con-
vergence of the subset failure rate estimators p̂(w)

fail to their true
values p∗ (w)

fail is assured by the central limit theorem and the
law of large numbers. The cutoff error contribution δ → 0 in
the limit of taking all subsets into account wmax → Nc, which
is equivalent to the limit of pphys → 0. Thus, it is clear that our
choice p̂ = pL+pU

2 is an unbiased estimator of the true failure
rate p∗.

APPENDIX B: DISCUSSION OF THE FAILURE RATE
UNCERTAINTY INTERVAL

In this Appendix, we refer to uncertainty intervals as
“errors” since there is no danger of confusion with Pauli
operators corrupting a QEC code in the following. The lower
and upper bound to the logical failure rate estimator and the
cutoff error, as defined in Eqs. (12), (16), and (17) in Sec. II,
are given by

pL =
∑
Pfail

∏
i

A(wi)qi (B1)

δ = 1 −
∑

P

∏
i

A(wi)qi

=
L∑

s=1

∑
Cs

⎡
⎣ s∏

i

A(wi )qi

⎛
⎝1 −

w
(Cs )
max∑

wCs =0

A(wCs )

⎞
⎠
⎤
⎦ (B2)

pU = pL + δ = 1 −
∑
Pno-fail

∏
i

A(wi )qi. (B3)

The quantities pL and pU can be used to bound the true
failure rate p∗ of a protocol in the sense that

p∗ ∈ [pL − σL, pU + σU ] (B4)

where σL/U is the respective sampling error for the estimators
pL and pU that results from estimating pL/U from a finite
number of shots and the true failure rate p∗ likely lies between
the upper and lower bound. In this section we derive these
confidence intervals [pL − σL, pU + σU ] with

σL/U = √
Var(pL/U ) (B5)

from the individual branching uncertainties σi of an event tree.
The two equalities in Eq. (B2) are two equivalent ways to

calculate the cutoff error δ in a subtractive or additive way
respectively, which we elaborate further in the subsequent
sections. The additive cutoff error (right-hand side) contains
the sum over all stages s of an event tree of length L and
all circuits Cs within a stage s with their respective binomial
factors A(wCs ). The subtractive cutoff error (left-hand side) is
just calculated via the sum over all paths P in the tree. The
summation index i refers to the respective path P, which the
binomial factor A(wi ) is part of.

1. Calculating event tree variances

In order to calculate the variances in Eq. (B5), we first show
general properties of variances that are useful to calculate ex-
pressions of the form of Var(pL ), which contain both sums and
products of random variables. Then, we explicitly calculate
illustrative examples of generic event trees.
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a. General formulas

Sums of random variables. For a sum of two random
variables X and Y , each multiplied by constants a and b
respectively, we calculate its variance as

Var(aX + bY ) = a2 Var(X ) + b2 Var(Y ) + 2ab Cov(X,Y )
(B6)

where

Cov(X,Y ) ≡ E((X − E(X ))(Y − E(Y ))) (B7)

is the covariance between X and Y . Generalizing to a sum of
n variables, the total variance is

Var

(
n∑
i

aiXi

)
=

n∑
i

a2
i Var(Xi )+2

n∑
j=1

j−1∑
i=1

aia j Cov(Xi, Xj ).

(B8)

A useful observation is that

Cov(X, 1 − X ) = Cov(X,−X ) = −Var(X ). (B9)

More generally, a relation that is useful at tree branchings is

Var[aX + b(1 − X )]

= a2 Var(X ) + b2 Var(1 − X ) + 2ab Cov(X, 1 − X )

= (a − b)2 Var(X ) � (a2 + b2) Var(X ). (B10)

From this we can see directly that the variance of two subtrees
that branch off a node with transition rates q = X and 1 −
q = 1 − X is always overestimated if one were to ignore the
covariance term.

Products of random variables. We can also calculate the
variance of a product of two independent variables

Var(XY ) = Var(X )Var(Y ) + Var(X )E(Y )2 + Var(Y )E(X )2,

(B11)

which generalizes to

Var

(∏
i

aiXi

)
=
∏

i

a2
i (Var(Xi ) + E(Xi )

2) −
∏

i

a2
i E(Xi )

2

(B12)

as long as the Xi and X 2
i are independent [75,76]. We also

refer to Eq. (B12) as Goodman’s formula. Calculating a path
variance with Goodman’s formula requires an exponential
number of additions. For a path with L branching ratios, the
first product creates L factors of two-termed sums and only
the term consisting of the product of all q2

i is subtracted again,

Var

(
L∏

i=1

qi

)
=

L∏
i=1

[
Var(qi ) + q2

i

]−
L∏

i=1

q2
i , (B13)

so we have 2L − 1 terms in the sum that we need to calculate
for a single path variance. For a tree that contains a number of
paths W , calculation of the variance will take W × (2L − 1)
additions and L multiplications per summand.

Covariance. The covariance of two subsequent random
variables q j and qk of a path in an event tree is identical
with zero since the latter variable qk is conditioned on the
former q j . In general, for four dependent random variables
X,Y,U,V that follow a normal distribution with expectation

FIG. 15. Example event tree with two stages and five samples
[cf. Fig. 1(c)]. Circuit nodes (blue circles) are labeled c j, ck , and cl .
Subset nodes (red squares) are labeled wa, wb, and wc. The branching
ratios qj and qk as well as qj and ql (and also qk and ql ) are
uncorrelated.

values x, y, u, v, it holds that

Cov(XY,UV )

= xu Cov(Y,V ) + xv Cov(Y,U )

+ yu Cov(X,V ) + yv Cov(X,U )

+ Cov(X,U )Cov(Y,V ) + Cov(X,V )Cov(Y,U ).
(B14)

It also follows directly from the definition of the covariance if
X,Y and U,V are each independent that

Cov(XY,UV ) = Cov(X,U )Cov(Y,V )

+ yvCov(X,U ) + xuCov(Y,V ). (B15)

Also, we have the special case

Cov(XY, XV ) = Var(X ) Cov(Y,V ) + yv Var(X )

+ x2 Cov(Y,V ). (B16)

Let us remark that a covariance term can be upper bounded
using the Cauchy-Schwarz inequality as

|Cov(X,Y )| �
√

Var(X ) Var(Y ). (B17)

b. Examples for event tree covariance contributions

Subsequent branching rates are uncorrelated. We now
demonstrate, by an example, that subsequent branching rates
qi in our event trees are indeed uncorrelated. Assume that
the branching with qk in Fig. 15 happens after, i.e., further
down in the tree and in the same path, as the branching with
q j . At the transition labeled with q j there is a list that keeps
the measurement history hj , e.g., h j = [0, 0, 1, 0, 1] meaning
for instance that, for the first shot, the measurement result
for the transition rate qj was 0 and, for the fifth shot, the
measurement result for the transition rate q j was 1. In this
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example, our current estimate of q j after 5 shots would then be
q j = 3/5. Let us assume that we branch off to ck whenever the
measurement result was 0 and to another circuit node cl when
the measurement result was 1. For qk then, there is another
list hk , e.g., hk = [1, 0, 1]. It must have the same length as the
number of zeros in h j since only those measurement results
lead us to circuit node ck . At circuit node cl there will be
a different history resulting from the measurement results
1 at c j , e.g., hl = [0, 1]. We leave out the binomial factors
for this discussion for simplicity. Now obviously, the sample
covariance

Cov(X,Y ) = 1

N

N∑
i=1

[Xi − E(X )][Yi − E(Y )] (B18)

is zero since we do not plug in hj and hk but only the sublist
where all elements are zero h(0)

j = [0, 0, 0]. Then

E
(
h(0)

j

) = 0, E
(
h(1)

j

) = 1, E(hk ) = 2
3 , E(hl ) = 1

2 ,

(B19)

Cov
(
h(0)

j , hk
) = 1

3

[
(0 − 0)

(
1 − 2

3

)+ (0 − 0)
(
0 − 2

3

)
+ (0 − 0)

(
1 − 2

3

)] = 0, (B20)

Cov
(
h(1)

j , hl
) = 1

2

[
(1 − 1)

(
0 − 1

2

)+ (1 − 1)
(
1 − 1

2

)] = 0.

(B21)

We now consider different types of minimal example trees
to illustrate the relevance of nonzero covariance terms. We
will see, as stated above, that covariance terms for branch-
ings from subset nodes are negative. Covariance terms of
branchings from circuit nodes (into fault-weight subsets) can
in general be non-negative.

Subset node branching covariance is negative. For a sum
of products, we in fact calculate variances of correlated vari-
ables. This is because branching to the left, e.g., in Fig. 15,
is weighted with q j and branching to the right is weighted
with 1 − q j [cf. Eq. (B9)]. So for a generic branching we have
terms like

Var[Bqjqk + C(1 − q j )ql ]

= B2 Var(q jqk ) + C2 Var[(1 − q j )ql ]

+ 2BC Cov[q jqk, (1 − q j )ql ]. (B22)

From Eq. (B15) we can see that

Cov[q jqk, (1 − q j )ql ] = −qkql Var(q j ). (B23)

with X = qj,Y = qk,U = 1 − q j,V = ql since
Cov(qk, ql ) = 0.

Denoting Var(q j ) = Vj , we can continue simplifying
Eq. (B22) like

Var[Bqjqk + C(1 − q j )ql ]

= B2
(
q2

jVk + q2
kVj + VjVk

)
+ C2

[
q2

l Vj + (1 − q j )
2Vl + VjVl

]− 2BCqkqlVj (B24)

� B2
(
q2

jVk + q2
kVj + VjVk

)+C2
[
q2

l Vj + (1 − q j )
2Vl + VjVl

]
(B25)

FIG. 16. Event tree example with nonzero covariance term be-
tween qk and ql because they both share the random variable qj in
their path. We reduced the indexing of the nodes for better readabil-
ity. Circuit nodes are labeled j, k, and l . Subset nodes are labeled 0
and 1 for this example.

to obtain an expression that is symmetric under simultaneous
exchange of q j ↔ 1 − q j and qk,Vk ↔ ql ,Vl if B = C as ex-
pected. Since that last term of Eq. (B24) contains only positive
factors but a negative sign, we surely increase the value of the
whole expression by neglecting it.

Note that we could also use the Cauchy-Schwarz inequality
(B17) to obtain a (worse) bound to Eq. (B22) like

Var[Bqjqk + C(1 − q j )ql ]

= B2 Var(q jqk ) + C2 Var[(1 − q j )ql ]

+ 2BC Cov[q jqk, (1 − q j )ql ]

� B2 Var(q jqk ) + C2 Var[(1 − q j )ql ]

+ 2BC
√

Var(q jqk )Var[(1 − q j )ql ], (B26)

which we just leave as a general comment.
Circuit node branching covariance can be non-negative. In

Fig. 15, we only looked at covariances at subset nodes. There
is also a contribution from circuit nodes. Consider the tree in
Fig. 16, where we also included a weight-1 node, which will
cause a non-negative Cov term as we show in the following.
The reason is that the branching does not involve two nodes
that contain the branching ratios with opposite sign as above
but both contributions are positive (B0 and B1 in the tree
below).

The failure rate from Fig. 16 is

pL = A1(q j (B0qk + B1ql ) + (1 − q j )C0qm) (B27)

and the variance

Var(pL ) = A2
1Var[q j (B0qk + B1ql ) + (1 − q j )C0qm]

= A2
1[Var(q j (B0qk + B1ql )) + Var((1 − qj )C0qm)

+ 2 Cov(q j (B0qk + B1ql ), (1 − q j )C0qm)]

= A2
1[Var(q jB0qk ) + Var(q jB1ql )
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FIG. 17. Any event tree can be constructed recursively by branchings from (a) circuit nodes c to subset nodes w1, w2, ... and (b) subset
nodes w to circuit nodes c and c̄. At higher levels, e.g., if c is the root node, the indicated failures correspond to coarse-grained subtree failure
rates. If any w does not have a circuit node successor but is followed by termination of the protocol, the base case of recursion is reached.
Failure rates and variances of upper bounds can be calculated by including the cutoff error δ to a circuit node’s failure rate. Its value must be
determined according to the rules described at the end of Appendix B 4.

+ 2 Cov(q jB0qk, q jB1ql ) + C2
0 Var((1 − q j )qm)

+ 2 Cov(q j (B0qk + B1ql ), (1 − q j )C0qm)]

= A2
1

[
B2

0 Var(q jqk ) + B2
1 Var(q jql )

+ 2B0B1 Cov(q jqk, q jql ) + C2
0 Var((1 − q j )qm)

+ 2 Cov(q j (B0qk + B1ql ), (1 − q j )C0qm)
]

(B28)

contains the negative Cov term of the form shown before but
there is also the term

Cov(q jqk, q jql ) = qkql Var(q j ) (B29)

for which we used Eq. (B16). It clearly is a non-negative
contribution that must be taken into account. We could use
the Cauchy-Schwarz inequality (B17) to estimate

B2
0 Var(q jqk ) + B2

1 Var(q jql ) + 2B0B1 Cov(q jqk, q jql )

� (B0

√
Var(q jqk ) + B1

√
Var(q jql ))

2. (B30)

However, the appearance of such terms can be prevented by
algebraic manipulation of the variance terms so that we never
need to explicitly take them into account, e.g., by recursively
calculating subtree variances starting at the tree’s leaves.

2. Lower bound uncertainty

It is straightforward to calculate the standard error σL on
the lower bound pL from Eq. (B1) using the general variance
of linear combinations of random variables in Eq. (B8) and
Goodman’s formula for the variance of products in Eq. (B12).
An iterative algorithmic procedure to calculate Var(pL ) will
be given in Appendix C.

Let us also remark that, alternatively, failure rates and vari-
ances may also be calculated neatly by exploiting the recursive
structure of the tree, namely by recursively “propagating”
these quantities up from the leaf nodes of a tree until its root
node. Any event tree can be built from the two components
shown in Fig. 17. For any subset node w, we define its node
rate w.p (think of p as a property or an attribute of w), which

can be determined as

w.p = w.q × c.p + (1 − w.q) × c̄.p (B31)

where w.q (1 − w.q) is the transition rate q from w to its sub-
sequent circuit node c (c̄) or to a “fail” (“success”) outcome
if w is a leaf node, i.e., w has no subsequent circuit node but
the protocol terminates. Analogously, we define the node rate
c.p of a circuit node c as the coarse-grained failure rate, or
the total failure rate of the subtrees below c. It can be cal-
culated as c.p = ∑

w∈c Aw w.p where w are all subset nodes
directly subsequent to c and Aw is their respective binomial
factor. The variance of c.p could be calculated analogously
via c.v = ∑

w∈c A2
w w.v. The variance of any subset node w is

obtained by Eqs. (B8) and (B12) as

w.v = Var(w.p) = Var[w.q × c.p + (1 − w.q) × c̄.p]

= Var(w.q × c.p) + Var[(1 − w.q) × c̄.p]

− 2 c.p × c̄.p Var(w.q)

= w.q2 × c.v + Var(w.q) c.p2 + Var(w.q) c.v

+ (1 − w.q)2 c̄.v + Var(w.q) c̄.p2

+ Var(w.q) c̄.v − 2 c.p × c̄.p Var(w.q)

= Var(w.q)[c.p2 + c.v + c̄.p2 + c̄.v − 2 c.p × c̄.p]

+ w.q2 × c.v + (1 − w.q)2 c̄.v

= Var(w.q)[(c.p − c̄.p)2 + c.v + c̄.v]

+ w.q2 × c.v + (1 − w.q)2 c̄.v (B32)

if w is not a leaf node and w.v = Var(w.q) if w is a leaf node.
This procedure can also be applied to calculate the upper

bound pU and its variance by including the single-circuit
cutoff error c.δ = 1 −∑wmax

w=0 Ac
w into c.p such that c.p =∑

w∈c Aw w.p + c.δ. Special cases for the value of δ for
FT protocols or small number of shots are discussed in
Appendix B 4.
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FIG. 18. Example tree structure from running the circuit c two consecutive times. No failure can happen at the end of the fault-free path,
so q3 = V3 = 0. The paths indicated with dashed orange lines are yet unexplored but could potentially lead to failures and thus contribute to
the cutoff error δ.

3. Upper bound uncertainty

Calculating σU iteratively requires careful consideration,
namely, all unexplored branchings in an event tree that could
potentially lead to failures when running more samples must
be incorporated. As an example, take the event tree in Fig. 18
that could result from a protocol where the circuit c can be
repeatedly run. Additionally, let us assume that after the first
run of c, in principle, also another circuit c̄ could be run. Not
only do all unsampled subset nodes contribute to the cutoff
error but also the incomplete branching with ratio q2. Here we
assume that, so far, only the branching to the left has been
realized so that q2 = 1 but the other branching possibility to
the right, i.e., running another circuit c̄, has not been realized
yet due to a finite number of samples.

The cutoff error must be calculated as

δ = 1 − A0 − A1 + A0q1(1 − A0 − A1)

+ A1[q2(1 − A0) + (1 − q2)] (B33)

and the upper bound reads

pL + δ = 1 − A0 − A1 + A0q1(1 − A0 − A1(1 − q4))

+ A1[q2(1 − A0(1 − q5)) + (1 − q2)], (B34)

where we explicitly have added the term 1 − q2 = 0: Al-
though it does not contribute to δ, the finite variance V2 > 0
leads to a contribution for the upper bound σU . We now
calculate the variance of the upper bound

Var{1 − A0 − A1 + A0q1[1 − A0 − A1(1 − q4)]

+ A1[q2[1 − A0(1 − q5)] + (1 − q2)]} ≡ T0 + T1 (B35)

T0 = A2
0 Var{q1[1 − A0 − A1(1 − q4)]}

= A2
0{(1 − A0)2V1 + A2

1 Var[q1(1 − q4)]

− 2(1 − A0)A1(1 − q4)V1} ∼ p2 (B36)

T1 = A2
1 Var{q2[1 − A0(1 − q5)] + (1 − q2)}

= A2
1(Var{q2[1 − A0(1 − q5)]}

+ V2 − 2[1 − A0(1 − q5)]V2) ∼ p2 (B37)

and observe that the standard error of the upper bound σU =√
Var(pU ) scales linearly just as the failure rate estimator.

Note that V1 = V3 = 0 since we assume that there can never be
a branching off the fault-free path. If Fig. 18 represented an FT
protocol, we would also have q5 = V5 = 0 since the weight-1
path can never lead to failure. However, V2 �= 0, which applies
to QEC in the sense that the protocol can deal with different
errors by realizing different circuit sequences. This means that
we must properly deal with cutoff errors that arise from not
having explored both possible circuit node successors from a
subset node.

4. Cutoff error for FT protocols

As mentioned in Secs. I and III, protocols can be designed
to have fault tolerance guarantees, in practice, e.g., FT-1
means that the occurrence of one single fault anywhere in
the protocol cannot lead to failure. While the consequential
improvement of the failure rate scaling p∗ from O(p) to O(p2)
is exactly what we want from an FT theory perspective, it
poses the following challenge here: For any protocol, the
cutoff error must upper bound the worst-case possible subset
failure rates that could occur within so far unsampled parts
of the protocol’s event tree. When left as above, the cutoff
error calculation will be ignorant to the FT guarantee, i.e., in
the calculation of δ we will assume that all unexplored paths
lead to failure, which will give a scaling as δ = O(p). But this
would render the estimator overly pessimistic and the relative
error would diverge for small p. However, we can exploit the
fact that also the unexplored paths may contain cases where
failure can be excluded when provided an FT guarantee.
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FIG. 19. Example trees illustrate the cutoff error (orange, no frames) after a single shot of a protocol containing the circuits ENC and
MEAS has been run (black frames). It is assumed that the protocol consists of two stages, which is not the case in general. (a) What is the
worst case contribution of the orange 1-subset to the failure rate?, (b) Two possible circuit branchings within the unsampled tree have an FT
path, and (c) The FT paths can be upper bounded by a single node • with binomial factors A•

w = Mw .

In the following, we show in two steps how to choose
the upper bound such that its scaling is of the same order
in p as the failure rate, i.e., the relative error stays constant
when scaling p. We only consider the special case of fault
tolerance towards a single fault in a QEC code of distance
d = 3 explicitly. The first step considers the branching ratios
at a single stage within the tree. The second step then deals
with circuit sequences, i.e., the worst case tree depth.

Figure 19(a) shows the challenge, which is special to an
FT protocol. While for a non-FT protocol the cutoff error
contribution at a circuit node called ENC would easily be
calculated as 1 − A0, we now do not want to assume anymore
that all paths branching off into the 1-subset of ENC lead to
failure in the worst case. This is because we know beforehand
that, since the protocol is FT, no 1-path can ever lead to failure.

Two possible paths are shown in Fig. 19(b). Their total
weights are A1QB0 and A1(1 − Q)C0. Reversely, if we do not
exclude these paths from our cutoff error, we would estimate
δ ∼ 1 − A0 ∼ p. Although this would be a correct worst case
bound to state, it unnecessarily overestimates the a priori
known worst case and causes the relative error δ/pL of pL ∼
p2 to diverge at p → 0 since then δ ∼ p. At the orange subset
node “1”, we cannot know a priori what the branching ratio Q
will be exactly without sampling (again, note that the point of
δ is to make a statement about unsampled parts of the tree).
It can also not be queried from the protocol since this would
require testing all possible weight-1 faults at this stage. Also,
here we are interested in analytically stating the worst case
error. We do not even know what the two possible resulting
circuits after the branching are since we cannot determine
beforehand how the protocol deals with every individual fault.
As an example, let us for the moment assume, the subsequent
circuit could either be MEAS or ¬MEAS (a circuit other than
MEAS). The cutoff error contribution of the orange subtree
would then be A1(Q(1 − B0) + (1 − Q)(1 − C0)). One of the
two binomial factors of the subsequent circuits will be smaller

than the other. Here, let us assume for illustration (and without
loss of generality) that B0 > C0. Then we can upper bound the
cutoff error contribution as

A1(Q(1 − B0) + (1 − Q)(1 − C0))

� A1(Q(1 − C0) + (1 − Q)(1 − C0)) = A1(1 − C0),
(B38)

which has the desired effect to remove the unknown branching
ratio Q from our estimation. In practice, we know the smallest
possible binomial factor independently from sampling. Thus,
as shown in Fig. 19(c), we can replace the branching with Q
by a single node with a binomial factor

M0 = min
c∈C∈P

(
Ac

0

)
. (B39)

Now, as a second step, we need to consider longer circuit
sequences, as for example in Fig. 19(c). There could follow
another circuit at the left leaf in the orange subtree, where,
again, a second 1-subset could lead to failure. This scenario
is depicted in Fig. 20(a). Although the weight sequence 1-
0 can never lead to failure after termination of the protocol,
the single fault could cause another branching so that a third
circuit will be run. Then, the weight sequence 1-0-1 is not FT
anymore and can lead to failure. We must consider this case
in our cutoff error.

This event is covered by the tree in Fig. 20(b). There is the
cutoff contribution A1M0(1 − M0) that contains this particular
example. Now, consider the fictitious case that the orange
subtree could potentially be infinitely deep. Then, the cutoff
contribution would be

A1[(1 − M0) + M0(1 − M0) + M2
0 (1 − M0) + · · · ]

= A1(1 − M0)
∞∑

k=0

Mk
0 = A1(1 − M0)

1

1 − M0
= A1 ∼ p,

(B40)
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FIG. 20. Example trees illustrate the cutoff error contributions from longer circuit sequences. The actual circuit sequence is unimportant
and can be bounded by M0 as shown in Fig. 19. Only the maximum length of all FT paths L is needed. (a) A contribution to the failure rate
can come from a deeper stage within the orange subtree (1-0-1), further down than another FT path (1-0), (b) All cutoff error contributions are
of the form 1 − M0 within the orange subtree illustrated by the two branchings to the right, and (c) The worst case contribution of the orange
1-subset to the failure rate is LA1(1 − M0).

which destroys our initial goal to formulate a cutoff error
that scales like pL. However, we know beforehand that the
tree can actually never be infinitely deep. All FT paths are
finite because no real protocol would go on forever without
dangerous faults and since the protocol was actively designed,
its maximum length L in case only correctable errors occur, is
always known. This changes the cutoff contribution to read

A1((1 − M0) + M0(1 − M0) + M2
0 (1 − M0)

+ · · · + ML−1
0 (1 − M0))

= A1(1 − M0)
L−1∑
k=0

Mk
0 � LA1(1 − M0) ∼ p2, (B41)

as we aimed for.
The maximum FT protocol lengths for the protocols con-

sidered here are given in Table I alongside with the circuits
that belong to the protocol.

There are different cases, illustrated in Fig. 21, for how to
consider the (FT) cutoff error and calculate the variance of the
upper bound to the failure rate for a general tree:

(i) If the total path weight up to a subset node is 0, we
add no additional branching circuit because we assume there
is only one fault-free path.

(ii) Only for FT protocol: If the total path weight up to a
subset node is 1, and the branching ratio q of the subset node is
equal to 1 and there is only one circuit node below the subset
node but the other one is still unknown, then we have to add
a complementary branching with factor 1 − q and a δ node
with value L(1 − M0). While this node does not contribute
directly to the cutoff error, it will contribute to the variance of
the upper bound via Var(1 − q) �= 0.

(iii) If the total path weight up to a subset node is 2 (for
an FT protocol) / 1 (for a non-FT protocol) or larger and the
branching ratio q of the subset node is equal to 1 and there
is only one circuit node below the subset node but the other
one is still unknown, then we have to add a complementary
branching with factor 1 − q and a δ node with value 1 below
the complementary branching with 1 − q.

(iv) Only for FT protocol: If the total path weight up to
a circuit node is 0 and if the circuit node does not have a 1-
subset, we have to add a virtual one. The virtual 1-subset has
a δ node of value L(1 − M0). The δ node of the circuit node
then has the usual value.

As a concluding remark, we note that to practically calcu-
late the cutoff error within a given stage i, we can determine
the factor l = L − i to account for the longest possible “rest
of the sequence” that could still follow from the current pro-
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TABLE I. Maximum FT protocol lengths for the protocols considered in Sec. III.

Protocol P max FT length L circuits c ∈ C ∈ P

GHZ state preparation 1 GHZ
Deterministic |0〉L 4 ENC, SZ, X7, MEAS
Stabilizer |0〉L 8 SX1a, SX2a, SX3a, SX1b, SX2b, SX3b, NFS, MEAS
Repeat until success 2+1 ENC, MEAS

tocol stage, where i circuits have been executed already. In
Fig. 20(c) we may replace with L with l . However, qsample
always uses the fixed value L for the cutoff error calculation.

There is one extra peculiarity to a “repeat until success”
protocol. Here we mean, for instance, a protocol that con-
sists of repeating an encoding circuit ENC until a verification
measurement signals success and then measuring all qubits as
represented by the node MEAS (see Refs. [16,28] for exam-
ples). Since all qubits are always reset upon execution of the
encoding circuit, we can only count its maximum length (of
2) from the last reset on. For example, a path ENC-1-ENC-
0-MEAS-0 is possible to realize. However, it is not possible
to realize an FT path longer than 2 + t , where t = 1. For
example, a path ENC-1-ENC-1-ENC-0-MEAS-0 would be
possible but it is of order p2 and thus covered by the cutoff
error contribution A1(1 − M0) in Fig. 20(b). For a “repeat until
success” protocol, one may achieve tighter bounds to the true
logical failure rate by adjusting which leaf node variances are
set to zero and which values are assigned to δ-nodes based on
the last qubit reset.

APPENDIX C: NUMERICAL IMPLEMENTATION: QSAMPLE

In this Appendix, we describe the numerical implemen-
tation of dynamical subset sampling in the python package
qsample, which is deployed together with this paper at
GitHub [18].

1. Numerical calculation of estimators

We model a quantum protocol as a graph containing quan-
tum circuits at its vertices and transition rules as edges, which
define the order of circuit execution. At the beginning of sam-
pling, the protocol graph starts at a predefined unique node,
root, and is subsequently traversed by choosing transitions
dynamically during runtime conditioned on the measurement
results of all circuits in the sequence of the current shot as vi-
sualized in Fig. 1(d). Naturally, as our goal is to obtain failure
rates of a protocol, we check at the end of the circuit sequence
whether a failure has occurred. Protocol terminations that do
not lead to failure are not explicitly represented as a node, i.e.,
there is no success node in a qsample protocol.

Individual samples of a protocol are efficiently tracked in a
tree data structure, analogous to Fig. 1(c), the sample tree. Re-
peatedly executing a noisy protocol thus nondeterministically
yields circuit sequences, modelled as paths of the sample tree,
which each start at a unique root node and end at a leaf node.
We restrict the maximum number of successors in the protocol
graph to at most two, since we assume that any quantum
protocol can be cast in such a form. By this constraint, we
can model the transition of a noisy circuit to the next by a
Bernoulli random variable X , which can take on the values
0,1 corresponding to which of two circuits is chosen. The
transition rates to either circuit are then estimated by E[X ] and
1 − E[X ], respectively. Additionally, the binomial factors Aw

FIG. 21. An FT protocol tree illustrating the four cases of the FT cutoff error. If the protocol were non-FT, the cases (II) and (IV) would
be replaced with instances of case (III).
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and cutoffs δ, determined as the four cases in Appendix B 4
prescribe, are included in the sample tree, branching off from
any circuit node [see Fig. 1(c)]. Thus, we define a path P ∈ P
as a unique sequence of circuits and binomial factors (one per
circuit), represented by circuit nodes and subset nodes in the
tree, ending on one of three terminal nodes, fail, no-fail, or
δ. As the fail and no-fail leaves represent the binary event
whether or not a failure occurred, we denote a path ending
on a fail leaf as fail path Pf ∈ P f . Furthermore, we define a
path ending on a δ node as Pδ ∈ Pδ . The lower bound pL is
then implemented as the sum over all fail paths P f as

pL = E

⎡
⎣ ∑

Pf ∈P f

∏
n∈Pf

An
wXn

⎤
⎦ =

∑
Pf ∈P f

∏
n∈Pf

An
wE[Xn], (C1)

where we denote the binomial factor for a subset of weight w

corresponding to the circuit node n as An
w. The second equality

of Eq. (C1) follows from independence of Xn within the same
path. The upper bound pU additionally includes the sum over
all path products Pδ , where the product is over all circuit
transition rates E[X ] and binomial factors Aw in a path, i.e.,

pL + δ = pL +
∑

Pδ∈Pδ

∏
n∈Pδ

An
w f (n), (C2)

where f (n) = E[Xn], except for δ nodes at which the value
f (n) = δn is determined by the cutoff error of the particular
circuit node [see a single yellow box in Fig. 1(c) and Eq. (16)].
The uncertainty on the failure rate bounds is calculated in a
similar way as

Var[pL] = Var

⎡
⎣ ∑

Pf ∈P f

∏
n∈Pf

An
wXn

⎤
⎦, (C3)

Var[pL + δ] = Var

⎡
⎣ ∑

Pf ∈P f

∏
n∈Pf

An
wXn +

∑
Pδ∈Pδ

∏
n∈Pδ

An
wXn

⎤
⎦.

(C4)

If we express the result of a path product as a random variable
Pi = ∏

n∈P An
wXn, we have for the variance of the sum

Var

[∑
i

Pi

]
=
∑
i, j

Cov[Pi, Pj]

=
∑

i

Var[Pi]︸ ︷︷ ︸
path variance

+ 2
∑
i< j

Cov[Pi, Pj]

︸ ︷︷ ︸
overlap variance

, (C5)

where we denote the first sum as the path variance and the
second as overlap variance. It is worth mentioning that we
have to consider the possibility that any path can potentially
end in a failure. Even though a failure may not have been
sampled for a path yet, its variance can be nonzero. These
virtual paths have contributions to both the path and overlap
variance. Exempt from this are the fault-free path and any path
with a total fault weight of at most 1 for FT-1 protocols.

The path variances are calculated via Goodman’s formula.
We first consider the variance of a path P ∈ P . Due to inde-

Algorithm 2. Variance of a path.

Input: Path P
Output: Variance of P, Var[P]

1: for node n in path P do
2: if n is a subset node then
3: A ← A × An

w

4: else if n is a circuit node then
5: E[P]2 ← E[P]2 × E[Xn]2

6: E[P2] ← E[P2] × (Var[Xn] + E[Xn]2)
7: end if
8: end for
9: return A2(E[P2] − E[P]2)

pendence of all Xi within a path P we get

Var[P] =
∏

i

(
Ai

w

)2
E
[
X 2

i

]−
∏

i

(
Ai

w

)2
E[Xi]

2

=
(∏

i

Ai
w

)2(∏
i

(
Var(Xi ) + E[Xi]

2
)−∏

i

(
E[Xi]

2
))

.

(C6)

It is straightforward to implement Eq. (C6) on our tree data
structure as listed in Algorithm 2. Here, the value of a circuit
node (subset node) is its associated transition rate (binomial
factor). The values of δ nodes are determined according to
Appendix B 4. The variance of a circuit node is determined by
the Wilson score interval [see Eq. (C12)] and the variance of
a subset node is zero.

The covariance terms are harder to obtain. We note that
only overlapping paths have a nonzero covariance and that
overlapping paths share one unique node, below which the
paths split and above which all nodes are common. Further,
we can distinguish two situations in which the last common
node is either a circuit node so that the subsequent branching
is determined by the random variable X or a subset node
so that the subsequent branching is determined by binomial
factor Aw. Both situations are depicted in Fig. 22.

Consider first the case where paths split at a circuit node.
If two paths P0 = UA0

∑
i Vi and P1 = UA1

∑
i Wi split at Xm

FIG. 22. Paths intersecting at a circuit node (circle) on the left
and at subset node (rectangle) on the right marked in red. The
common upstream path contains all common random variables Xi

and constants Ai
w . Its path product can be interpreted as a new random

variable U . The random variables Vi,Wi, Zi represent the rest of those
paths downstream.
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with common path U , the overlap variance reads

Cov[P0, P1] = E

[
A0

∑
i

Vi

]
E

[
A1

∑
i

Wi

]
︸ ︷︷ ︸

subtree sums Sw

Var[U ]. (C7)

As the downstream paths Vi and Wi are all unique they are
independent of each other, thus their covariance is fully de-
termined by the variance of the upstream path scaled by the
weights of its downstream subtrees, i.e., the sum of all paths
starting at Xm and ending on, e.g., failure nodes. By Eq. (C5),
we have to consider all unique combinations of paths overlap-
ping at this node, which leads to the total contribution to the
overlap variance from paths diverging at circuit nodes,

2
∑
i< j

Cov[Pi, Pj]

= 2
∑
i< j

E

[
Ai

w

∑
k

V i
k

]
E

[
Aj

w

∑
l

W j
l

]
Var[Ui] (C8)

In case paths split at subset nodes, there are always only
two downstream paths. However, as the last common random
variable in both paths are complements of each other, we
obtain for the two paths P0 = UXm

∑
i Vi and P1 = U (1 −

Xm)
∑

i Wi the covariance

Cov[P0, P1] = E

[∑
i

Vi

]
E

[∑
i

Wi

]
︸ ︷︷ ︸

subtree sums Sk

Cov(UXm,U (1 − Xm))

= E

[∑
i

Vi

]
E

[∑
i

Wi

]

× (Var[U ]E[Xm] − Var(UXm)). (C9)

Thus, the total contribution to the overlap variance for paths
overlapping at a subset node is

2
∑
i< j

Cov[Pi, Pj] = 2
∑
i< j

E

[∑
k

V i
k

]
E

[∑
l

W j
l

]

× (
Var[Ui]E

[
X i

m

]− Var
(
UiX

i
m

))
.

(C10)

In the python package qsample the calculation of variances
of pL and pL + δ is performed as described in pseudocode in
Algorithm 3.

2. Uncertainty intervals

The sampling error for MC sampling can be estimated by
the Wald interval

εMC =
√

p̂(1 − p̂)

N
(C11)

so that for a large number of samples N → ∞ the true failure
rate p∗ is likely to be found in the 68% confidence interval
[ p̂ − εMC, p̂ + εMC]. It is known that for p̂ estimations that
are close to or equal to zero or one after a finite but poten-
tially small number of samples the Wald interval suffers from

Algorithm 3. Variance on lower bound pL (upper bound pL + δ)
to failure rate.

Input: Sample tree T
Output: Variance Var[pL] (Var[pL + δ])

1: Get P = P f (P f ∪ Pδ) from T
2: Calculate sum of path variances V1 ← ∑

P∈P Var[P]
3: Get overlaps O ← {Oi = maxd (P ∩ P′)∀P, P′ ∈ P}

with node depth d
4: for Oi ∈ O do
5: if Oi is a circuit node then
6: Calculate subtree sums Sw = Am

w

∑
j E[X w

j ] for j > m
7: Calculate upstream path variance Var[Oi]
8: V i

2 ← 2Var[Oi]
∑

w<w′ SwSw′

9: else if Oi is a subset node then
10: Calculate subtree sums Sk = ∑

j E[X k
j ] for j > m

11: Calculate upstream path variance Var[Oi]
12: Calculate path variance Var[OiXm]
13: Get expectation value E[Xm]
14: V i

2 ← 2(Var[Oi]E[Xm] − Var[OiXm])
∏

k Sk

15: end if
16: V2 ← V2 + V i

2

17: end for
18: return V1 + V2

irregularities. These can be prevented using the Wilson score
interval [33] instead, which is bounded by

p± = 1

1 + z2
α/2

N

⎛
⎝ p̂ + z2

α/2

2N
± zα/2

√
p̂(1 − p̂)

N
+ z2

α/2

4N2

⎞
⎠
(C12)

at confidence level 1 − α where z is the quantile function of
the normal distribution. The sampling error for all numerical
simulations in qsample is given as the Wilson score interval
(C12) at a confidence level of 68% (zα/2 = 1) in a symmetric
form [ p̂ − p+−p−

2 , p̂ + p+−p−
2 ].

3. Selection criterion

a. Binomial-factor-based choice

The default procedure in qsample simply selects the sub-
sets randomly based on the binomial distribution Aw(pmax) of
subsets for each circuit at run-time. For each circuit, we draw a
random number r ∈ [0, 1] and choose the weight w for which

w−1∑
i=0

Ai � r �
w∑

i=0

Ai (C13)

where the left sum is understood to be equal to zero if w = 0.
Furthermore, sampling of the weight-0 subset of a circuit

can be prohibited if the circuit under fault-free conditions
always yields the same deterministic outcome, for instance
for a “repeat until success” protocol. In this case, the sums in
Eq. (C13) should start from i = 1 while each term is rescaled
such that the overall subset selection probability remains
unity.
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FIG. 23. Box representation of different fault-weight subsets for
a protocol that consists of a single circuit with binomial factors Ai.
The subset failure rate p(1)

fail has a sampling uncertainty ε(1). Opening
the 2-fault subset amounts to reducing the cutoff error δ by the bino-
mial factor A2 but in turn increasing the overall sampling uncertainty.
This is because an initial estimate from few shots of p(2)

fail comes
with a large uncertainty ε(2). (The 0-fault subset is assumed to be
the largest subset, but we draw it on the side for better visibility of
the higher-weight subsets.)

b. ERU choice

We implement the ERU criterion whose defining feature
is that it always chooses the subset so that the next shot
maximizes the expected reduction of the total uncertainty of
p̂. It balances the trade-off between continuing to sample
in a subset that is already known—thereby decreasing the
sampling error—or going to a new subset where, initially, we
would end up with a relatively large sampling uncertainty but
we get to reduce the cutoff error δ.

It requires calculation of the shifted transition rates q±
i as

given by Eq. (21), where it is assumed that the next sample
yields a ± measurement outcome. Let us assume that any qi

is determined by

qi = mCi

NCi

(C14)

where mCi counts the numbers of positive measurement out-
comes and NCi is the total number of samples of the particular
node qi belongs to. Then

q+
i ≡ mCi + 1

NCi + 1
= mCi + 1

NCi

NCi

NCi + 1
=
(

mCi

NCi

+ 1

NCi

)
NCi

NCi + 1

=
(

qi + 1

NCi

)
NCi

NCi + 1
and (C15)

q−
i ≡ mCi

NCi + 1
= qi

NCi

NCi + 1
(C16)

as stated in Eq. (21).
The expected reduction of uncertainty (ERU) at a node i

is defined by Eq. (22). An illustration is given in Fig. 23. It
depicts a known subset failure rate p(1)

fail in the 1-subset with
the yellow marked cutoff error δ, which includes A2. p(1)

fail has
a sampling uncertainty of ε(1) so that the total length of the
uncertainty interval η about p̂, i.e., the difference between
upper and lower bound according to Eq. (20), is 2ε(1) + δ

FIG. 24. Circuit sequences can be represented by nested boxes
as in Fig. 1(c). A subbox can take up at most all the space provided
by the enclosing box. The fault-free path has the total binomial factor
A0B0C0 here. Within the subbox labeled by the green C0, no failure
can occur [compare to the green path in Fig. 1(a)].

[note that the estimator p̂ is centered between upper and lower
bound according to Eq. (15) and that, since we only consider
a single circuit, the sampling uncertainties of the upper and
lower bound are identical so that 2ε(1) = σL + σU in this ex-
ample]. If we were to spend the next shot in the 2-subset, the
total uncertainty would change to read 2ε(1) + 2ε(2) + δ − A2.
Another shot in the 1-subset would just decrease ε(1) and
keep δ unchanged. The choice that reduces the expected total
uncertainty the most, is the one that is taken according to the
ERU criterion. In this example we have

�(2) = (2ε(1) + δ) − [
p(2)

fail · (2(ε(1) + ε(2)|+) + δ − A2)

+ (
1 − p(2)

fail

) · (2(ε(1) + ε(2)|−) + δ − A2)
]

= A2 − 2ε(2)|+, (C17)

�(1) = (2ε(1) + δ) − [
p(1)

fail · (2ε(1)|+ + δ)

+ (
1 − p(1)

fail

) · (2ε(1)|− + δ)
]

= 2ε(1) − [
p(1)

fail · 2ε(1)|+ + (
1 − p(1)

fail

) · 2ε(1)|−
]
.

(C18)

Note that, although there is no current value for p(2)
fail yet, this is

not a problem for evaluating Eq. (C17) since we have ε(2)|+ =
ε(2)|−, which is always the case when we open a new subset.

The more complicated situation of circuit sequences is
illustrated in Fig. 24. When choosing a weight subset at a
given stage, we must consider the total uncertainty of all the
contained boxes (and the cutoff error of the given stage).
Choosing 0 in the outermost box, for example, will be done
under consideration of p(011)

fail and contributions to δ from all
stages. For choosing the 1-subset, we must consider the total
uncertainty of failure in all subboxes of A1. This especially
now includes the uncertainty about the size of the subboxes,
as indicated by σi, the uncertainty of the branching ratio qi

that leads from A1 to the circuits with binomial factors Dw.
Note that this uncertainty does not exist for the 0-subsets since
the fault-free path is deterministic. The splitting is further
illustrated in Fig. 25.

013177-23



HEUßEN, WINTER, RISPLER, AND MÜLLER PHYSICAL REVIEW RESEARCH 6, 013177 (2024)

FIG. 25. Subboxes of the A1 box, labeled D and E , are weighted
by the branching ratio qi or 1 − qi respectively [cf. Fig. 1(c)]. Since
the branching ratio estimate qi has an uncertainty σi, the size of any
subbox is not determined with total confidence.

When probing a new subset, i.e., reducing the total cutoff
error, for the calculation of the ERU, it is reasonable to assume
that a newly opened subset will lead to failure with probability
1/2. Since nothing is known about the subtree below this
subset node and we do not get a measurement outcome that
would reveal some new information about the tree, we can
only assume failure with a finite probability, e.g., 1/2. Note
that while assuming a failure probability of 0 is unrealistic
for a non-FT path, assuming a failure probability of 1 would
cause the cutoff error to not change at all compared to the
current tree value. This is different from the single-circuit case
discussed above since there we can immediately evaluate the
effect of the failure or no-failure outcome after choosing a
subset, which cannot be done for a circuit sequence. It is not
strictly necessary to assume an initial failure rate of 1/2 but
any finite value is fine. It could, for example, be set as the
current average value of all subset failure rates 1

Nw

∑
w p(w)

fail .
This is not yet implemented in qsample.

APPENDIX D: NOISE MODEL

For the examples that we show in Sec. III, we employ
circuit-level depolarizing noise. We apply the fault-operators

F1 ∈ {σi,∀i ∈ [1, 2, 3]}, (D1)

F2 ∈ {σi ⊗ σ j,∀i, j ∈ [0, 1, 2, 3]} \ I ⊗ I, (D2)

where σi are the Pauli matrices and σ0 = I is the identity
operation. Single-qubit faults F1 are applied uniformly with
probability p1/3 and are not applied with probability 1 − p1.
The two-qubit faults F2 are applied uniformly with probability

FIG. 26. Improved bounds for the logical failure rate estimation
for the state preparation protocol via flag-FT stabilizer measure-
ments. The only difference to Fig. 14 is that we sampled at an
increased pmax = 10−2 (gray vertical dash-dotted line). Here, the
cutoff error vanishes in the limit pphys → 0 since 104 shots with DSS
and binomial factor choice suffice to sample all relevant subsets.

p2/15 and are not applied with probability 1 − p2. This means
that

(1) a single-qubit gate is followed by a Pauli fault F1 drawn
uniformly and independently from {X,Y, Z} with probability
p1/3,

(2) a two-qubit gate is followed by a two-Pauli fault F2

drawn uniformly and independently from {I, X,Y, Z}⊗2\I ⊗ I
with probability p2/15,

(3) qubit initialization is flipped (e.g., |0〉 → |1〉 , |+〉 →
|−〉) with probability 2p1/3 and

(4) qubit measurements yield a flipped result (±1 → ∓1)
with probability 2p1/3.

APPENDIX E: TIGHTER BOUNDS FOR FLAG-FT
STABILIZER MEASUREMENTS

The relatively large cutoff error that we found for the
flag-FT stabilizer measurement example protocol in Sec. III D
can be reduced in practice without changing the dynamical
subset sampling algorithm. In Fig. 26 we show a much smaller
cutoff error that we obtain by increasing the maximal physical
fault rate to pmax = 10−2 instead of sampling at pmax = 10−3.
While the cutoff error remains large at pmax = 10−2, this
increase has the effect that more different fault-weight sub-
sets are chosen by the binomial factor choice criterion. As a
consequence, the space of possible paths is more thoroughly
explored and the bounds to the true protocol failure rate
tighten as we lower pphys, in agreement with the direct MC
data points, which have a growing uncertainty interval as in
Fig. 14.
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