001     1020946
005     20240226075322.0
024 7 _ |a 10.3389/fninf.2023.1250260
|2 doi
024 7 _ |a 10.34734/FZJ-2024-00414
|2 datacite_doi
024 7 _ |a 37780458
|2 pmid
024 7 _ |a WOS:001073043200001
|2 WOS
037 _ _ |a FZJ-2024-00414
082 _ _ |a 610
100 1 _ |a Konradi, Peter
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a PyDapsys: an open-source library for accessing electrophysiology data recorded with DAPSYS
260 _ _ |a Lausanne
|c 2023
|b Frontiers Research Foundation
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1704975905_1192
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In the field of neuroscience, a considerable number of commercial data acquisition and processing solutions rely on proprietary formats for data storage. This often leads to data being locked up in formats that are only accessible by using the original software, which may lead to interoperability problems. In fact, even the loss of data access is possible if the software becomes unsupported, changed, or otherwise unavailable. To ensure FAIR data management, strategies should be established to enable long-term, independent, and unified access to data in proprietary formats. In this work, we demonstrate PyDapsys, a solution to gain open access to data that was acquired using the proprietary recording system DAPSYS. PyDapsys enables us to open the recorded files directly in Python and saves them as NIX files, commonly used for open research in the electrophysiology domain. Thus, PyDapsys secures efficient and open access to existing and prospective data. The manuscript demonstrates the complete process of reverse engineering a proprietary electrophysiological format on the example of microneurography data collected for studies on pain and itch signaling in peripheral neural fibers.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a SLNS - SimLab Neuroscience (Helmholtz-SLNS)
|0 G:(DE-Juel1)Helmholtz-SLNS
|c Helmholtz-SLNS
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Troglio, Alina
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Pérez Garriga, Ariadna
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Pérez Martín, Aarón
|0 P:(DE-Juel1)184896
|b 3
|u fzj
700 1 _ |a Röhrig, Rainer
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Namer, Barbara
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Kutafina, Ekaterina
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.3389/fninf.2023.1250260
|g Vol. 17, p. 1250260
|0 PERI:(DE-600)2452979-5
|p 1250260
|t Frontiers in neuroinformatics
|v 17
|y 2023
|x 1662-5196
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1020946/files/fninf-17-1250260.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1020946/files/fninf-17-1250260.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1020946/files/fninf-17-1250260.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1020946/files/fninf-17-1250260.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1020946/files/fninf-17-1250260.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1020946
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)184896
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-23
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT NEUROINFORM : 2022
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-05-11T13:08:14Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-05-11T13:08:14Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-23
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-08-23
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2021-05-11T13:08:14Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-23
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-23
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21