001020959 001__ 1020959
001020959 005__ 20240226075323.0
001020959 0247_ $$2doi$$a10.1007/s12015-023-10538-w
001020959 0247_ $$2ISSN$$a2629-3269
001020959 0247_ $$2ISSN$$a1550-8943
001020959 0247_ $$2ISSN$$a1558-6804
001020959 0247_ $$2ISSN$$a2629-3277
001020959 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-00427
001020959 0247_ $$2pmid$$a37093520
001020959 0247_ $$2WOS$$aWOS:000976970000001
001020959 037__ $$aFZJ-2024-00427
001020959 082__ $$a610
001020959 1001_ $$aMaassen, Jessika$$b0
001020959 245__ $$aIn Vitro Simulated Neuronal Environmental Conditions Qualify Umbilical Cord Derived Highly Potent Stem Cells for Neuronal Differentiation
001020959 260__ $$aNew York, NY$$bHumana Press$$c2023
001020959 3367_ $$2DRIVER$$aarticle
001020959 3367_ $$2DataCite$$aOutput Types/Journal article
001020959 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1705036593_26020
001020959 3367_ $$2BibTeX$$aARTICLE
001020959 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001020959 3367_ $$00$$2EndNote$$aJournal Article
001020959 520__ $$aThe healing of neuronal injuries is still an unachieved goal. Medicine-based therapies can only extend the survival of patients, but not finally lead to a healing process. Currently, a variety of stem cell-based tissue engineering developments are the subject of many research projects to bridge this gap. As yet, neuronal differentiation of induced pluripotent stem cells (iPS), embryonic cell lines, or neuronal stem cells could be accomplished and produce functional neuronally differentiated cells. However, clinical application of cells from these sources is hampered by ethical considerations. To overcome these hurdles numerous studies investigated the potential of adult mesenchymal stem cells (MSCs) as a potential stem cell source. Adult MSCs have been approved as cellular therapeutical products due to their regenerative potential and immunomodulatory properties. Only a few of these studies could demonstrate the capacity to differentiate MSCs into active firing neuron like cells. With this study we investigated the potential of Wharton's Jelly (WJ) derived stem cells and focused on the intrinsic pluripotent stem cell pool and their potential to differentiate into active neurons. With a comprehensive neuronal differentiation protocol comprised of mechanical and biochemical inductive cues, we investigated the capacity of spontaneously forming stem cell spheroids (SCS) from cultured WJ stromal cells in regard to their neuronal differentiation potential and compared them to undifferentiated spheroids or adherent MSCs. Spontaneously formed SCSs show pluripotent and neuroectodermal lineage markers, meeting the pre-condition for neuronal differentiation and contain a higher amount of cells which can be differentiated into cells whose functional phenotypes in calcium and voltage responsive electrical activity are similar to neurons. In conclusion we show that up-concentration of stem cells from WJ with pluripotent characteristics is a tool to generate neuronal cell replacement.
001020959 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001020959 536__ $$0G:(DE-HGF)POF4-5244$$a5244 - Information Processing in Neuronal Networks (POF4-524)$$cPOF4-524$$fPOF IV$$x1
001020959 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001020959 7001_ $$aGuenther, Rebecca$$b1
001020959 7001_ $$aHondrich, Timm J. J.$$b2
001020959 7001_ $$0P:(DE-Juel1)180680$$aCepkenovic, Bogdana$$b3$$ufzj
001020959 7001_ $$aBrinkmann, Dominik$$b4
001020959 7001_ $$0P:(DE-Juel1)128705$$aMaybeck, Vanessa$$b5$$eCorresponding author
001020959 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b6$$eCorresponding author
001020959 7001_ $$0P:(DE-HGF)0$$aDittrich, Barbara$$b7
001020959 7001_ $$0P:(DE-HGF)0$$aMüller, Anna$$b8
001020959 7001_ $$aSkazik-Voogt, Claudia$$b9
001020959 7001_ $$aKosel, Maximilian$$b10
001020959 7001_ $$aBaum, Christoph$$b11
001020959 7001_ $$0P:(DE-HGF)0$$aGutermuth, Angela$$b12
001020959 773__ $$0PERI:(DE-600)2495579-6$$a10.1007/s12015-023-10538-w$$gVol. 19, no. 6, p. 1870 - 1889$$n6$$p1870 - 1889$$tStem cell reviews and reports$$v19$$x2629-3269$$y2023
001020959 8564_ $$uhttps://juser.fz-juelich.de/record/1020959/files/s12015-023-10538-w.pdf$$yOpenAccess
001020959 8564_ $$uhttps://juser.fz-juelich.de/record/1020959/files/s12015-023-10538-w.gif?subformat=icon$$xicon$$yOpenAccess
001020959 8564_ $$uhttps://juser.fz-juelich.de/record/1020959/files/s12015-023-10538-w.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001020959 8564_ $$uhttps://juser.fz-juelich.de/record/1020959/files/s12015-023-10538-w.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001020959 8564_ $$uhttps://juser.fz-juelich.de/record/1020959/files/s12015-023-10538-w.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001020959 909CO $$ooai:juser.fz-juelich.de:1020959$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001020959 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180680$$aForschungszentrum Jülich$$b3$$kFZJ
001020959 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128705$$aForschungszentrum Jülich$$b5$$kFZJ
001020959 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b6$$kFZJ
001020959 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001020959 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5244$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x1
001020959 9141_ $$y2023
001020959 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
001020959 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-26
001020959 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-26
001020959 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001020959 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-26
001020959 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSTEM CELL REV REP : 2022$$d2023-10-26
001020959 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-26
001020959 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2023-10-26$$wger
001020959 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
001020959 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-26
001020959 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001020959 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-26
001020959 915__ $$0StatID:(DE-HGF)1120$$2StatID$$aDBCoverage$$bBIOSIS Reviews Reports And Meetings$$d2023-10-26
001020959 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
001020959 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
001020959 920__ $$lyes
001020959 9201_ $$0I:(DE-Juel1)IBI-3-20200312$$kIBI-3$$lBioelektronik$$x0
001020959 980__ $$ajournal
001020959 980__ $$aVDB
001020959 980__ $$aUNRESTRICTED
001020959 980__ $$aI:(DE-Juel1)IBI-3-20200312
001020959 9801_ $$aFullTexts