001020988 001__ 1020988
001020988 005__ 20240226075325.0
001020988 037__ $$aFZJ-2024-00448
001020988 041__ $$aEnglish
001020988 1001_ $$0P:(DE-Juel1)130545$$aBihlmayer, Gustav$$b0$$eCorresponding author$$ufzj
001020988 1112_ $$aFrühjahrstagung der DPG (SKM)$$cDresden$$d2023-03-27 - 2023-03-31$$wGermany
001020988 245__ $$aConical spin-spirals at a ferromagnet’s surface: a theoretical analysis
001020988 260__ $$c2023
001020988 3367_ $$033$$2EndNote$$aConference Paper
001020988 3367_ $$2DataCite$$aOther
001020988 3367_ $$2BibTeX$$aINPROCEEDINGS
001020988 3367_ $$2DRIVER$$aconferenceObject
001020988 3367_ $$2ORCID$$aLECTURE_SPEECH
001020988 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1705499690_21642$$xOther
001020988 520__ $$aThe properties of surface layers of a magnetic material can differ substantially from those of the bulk material.  A prominent example is the Dzyaloshinskii-Moriya interaction (DMI), resulting from inversion-symmetry breaking at the surface, but also the magnetic anisotropy and the exchange interactions are locally modified.  Gd(0001) is here a well-investigated model surface but despite its sensitivity of exchange interactions, experimental data indicated that it behaves as homogeneous Heisenberg system [1].  Recent observations of spin-spirals  at the surface of epitaxial Gd(0001) with spin-polarized scanning tunneling microscopy let us re-investigate this system. Density functional theory (DFT) calculations show that not only a sizable DMI can be found at the Gd(0001) surface but also the exchange interactions are modified to drive the system locally into a conical spin-spiral state. Since the magnetic anisotropy and the exchange interactions with the ferromagnetic bulk material disfavor non-collinear magnetic states, only slight modifications of the exchange interactions make these spirals visible. We explore the phase diagram numerically and with the help of atomistic spin-dynamics simulations.[1] C. S. Arnold and D. P. Pappas, Phys. Rev. Lett. 85, 5202 (2000)
001020988 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001020988 7001_ $$0P:(DE-HGF)0$$aHärtl, Patrik$$b1
001020988 7001_ $$0P:(DE-HGF)0$$aLeisegang, Markus$$b2
001020988 7001_ $$0P:(DE-HGF)0$$aBode, Matthias$$b3
001020988 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b4$$ufzj
001020988 909CO $$ooai:juser.fz-juelich.de:1020988$$pVDB
001020988 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130545$$aForschungszentrum Jülich$$b0$$kFZJ
001020988 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b4$$kFZJ
001020988 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001020988 9141_ $$y2023
001020988 920__ $$lyes
001020988 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001020988 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
001020988 980__ $$aconf
001020988 980__ $$aVDB
001020988 980__ $$aI:(DE-Juel1)PGI-1-20110106
001020988 980__ $$aI:(DE-Juel1)IAS-1-20090406
001020988 980__ $$aUNRESTRICTED