001     1021030
005     20240709082106.0
037 _ _ |a FZJ-2024-00490
100 1 _ |a Pivak, Y.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
111 2 _ |a Materials Science and Technology in Europe 2023
|g EUROMAT23
|c Frankfrut am Main
|d 2023-09-03 - 2023-09-07
|w Germany
245 _ _ |a Metal electrodeposition/stripping and 4D STEM analysis via operando liquid cell transmission electron microscopy
260 _ _ |c 2023
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1705297045_22159
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Aqueous metal batteries present new possibilities towards low cost and more sustainable energy storage. However, one of the main stumbling blocks to this battery technology is the growth of metal dendrites, which tend to cause battery premature failure and safety issues. Here, we employ liquid cell transmission electron microscopy (TEM) to directly visualized the electroplating and stripping of metals on micro electrodes at the nanoscale. Using operando liquid cell TEM, a new approach to liquid thickness manipulation and 4D STEM electron diffraction analysis, will reveal how the growth of Zn dendrites in Zn-ion batteries can be effectively controlled on electrochemical cycling.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
700 1 _ |a Park, J. ²
|0 P:(DE-Juel1)180853
|b 1
700 1 _ |a Weber, Dieter
|0 P:(DE-Juel1)171370
|b 2
700 1 _ |a Jo, J. ³
|0 P:(DE-Juel1)180678
|b 3
700 1 _ |a Sun, H.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 5
|u fzj
700 1 _ |a Basak, S. ⁵
|0 P:(DE-Juel1)180432
|b 6
909 C O |o oai:juser.fz-juelich.de:1021030
|p VDB
910 1 _ |a DENSsolutions, Delft (Netherlands)
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180853
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171370
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)180678
910 1 _ |a DENSsolutions, Delft (Netherlands)
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)156123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)180432
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2023
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 1
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21