001021034 001__ 1021034
001021034 005__ 20240709082106.0
001021034 037__ $$aFZJ-2024-00494
001021034 1001_ $$0P:(DE-Juel1)177677$$aValencia, Helen$$b0$$eCorresponding author
001021034 1112_ $$aThe 20th of International Microscopy Congress$$cBusan$$d2023-09-10 - 2023-09-15$$gIMC20$$wSouth Korea
001021034 245__ $$aTracking the crystalline-amorphous transition during lithiation of silicon microparticles
001021034 260__ $$c2023
001021034 3367_ $$033$$2EndNote$$aConference Paper
001021034 3367_ $$2BibTeX$$aINPROCEEDINGS
001021034 3367_ $$2DRIVER$$aconferenceObject
001021034 3367_ $$2ORCID$$aCONFERENCE_POSTER
001021034 3367_ $$2DataCite$$aOutput Types/Conference Poster
001021034 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1705320276_22087$$xAfter Call
001021034 520__ $$aWith the aim of the European Commission to archive the first climate-neutral continent by 2025 the development of electrical energy systems is of great importance [1]. Therefore, the improvement of energy storage systems is crucial, making the development of the next generation of Lithium-ion batteries an up-to-date topic. Graphite-based anodes are nowadays widely used, but silicon-based anodes are of great interest due to their high theoretical capacity of 3579 mAh/g which is approximately ten-fold than that of the commonly used graphite-based anodes [2,3]. The biggest challenge that silicon-based anodes face is the degradation due to volume expansions of ~300 % upon (de)lithiation, resulting in a crystalline-amorphous transition. To overcome this hurdle, one approach is partial lithiation, by only using ~30 % of the silicon anode, meaning the silicon anode is cycled under its capacity limit. The benefit of this approach is a smaller volume expiation of only one-third of the maximal expansion which also helps to ensure that a crystalline silicon phase remains upon (de)lithiation [4]. Transmission electron microscopy (TEM) is the method of choice in order to correlate the microstructure, and chemical composition with the electrochemical performance of the crystalline and amorphous phases within partially lithiated polycrystalline silicon microparticles. Although silicon nanoparticles have been studied extensively and a core-shell model is proposed [2,5]. In the sample we investigated, we found out that additional amorphous veins form throughout the silicon crystal upon lithiation, which is supported by other literature sources [6]. This indicates that there are still unanswered questions regarding bulk silicon anodes. To further understand how the amorphous veins form in the silicon microparticles during lithiation and whether this stage can be investigated, an in-situ biasing TEM experiment was performed to lithiate a pristine sample by applying an electrical current.
001021034 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001021034 7001_ $$0P:(DE-HGF)0$$aRapp, Philip$$b1
001021034 7001_ $$0P:(DE-Juel1)190423$$aAhrens, Lara$$b2
001021034 7001_ $$0P:(DE-HGF)0$$aGraf, Maximilian$$b3
001021034 7001_ $$0P:(DE-HGF)0$$aGasteiger, Huber$$b4
001021034 7001_ $$0P:(DE-Juel1)180432$$aBasak, Shibabrata$$b5
001021034 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b6$$ufzj
001021034 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b7$$ufzj
001021034 909CO $$ooai:juser.fz-juelich.de:1021034$$pVDB
001021034 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177677$$aForschungszentrum Jülich$$b0$$kFZJ
001021034 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aDepartment Of Chemistry, TUM, Germany$$b1
001021034 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190423$$aForschungszentrum Jülich$$b2$$kFZJ
001021034 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department Of Chemistry, TUM, Germany$$b3
001021034 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department Of Chemistry, TUM, Germany$$b4
001021034 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180432$$aForschungszentrum Jülich$$b5$$kFZJ
001021034 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b6$$kFZJ
001021034 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b6$$kRWTH
001021034 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b7$$kFZJ
001021034 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)130824$$aRWTH Aachen$$b7$$kRWTH
001021034 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001021034 9141_ $$y2023
001021034 920__ $$lyes
001021034 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
001021034 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x1
001021034 980__ $$aposter
001021034 980__ $$aVDB
001021034 980__ $$aI:(DE-Juel1)IEK-9-20110218
001021034 980__ $$aI:(DE-Juel1)ER-C-2-20170209
001021034 980__ $$aUNRESTRICTED
001021034 981__ $$aI:(DE-Juel1)IET-1-20110218