001021036 001__ 1021036
001021036 005__ 20240709082107.0
001021036 037__ $$aFZJ-2024-00496
001021036 1001_ $$0P:(DE-HGF)0$$aPivak, Yevheniy$$b0
001021036 1112_ $$aThe 20th of International Microscopy Congress$$cBusan$$d2023-09-10 - 2023-09-15$$gIMC20$$wSouth Korea
001021036 245__ $$aMetal electroplating/stripping and 4D STEM analysis revealed by liquid phase transmission electron microscopy
001021036 260__ $$c2023
001021036 3367_ $$033$$2EndNote$$aConference Paper
001021036 3367_ $$2DataCite$$aOther
001021036 3367_ $$2BibTeX$$aINPROCEEDINGS
001021036 3367_ $$2DRIVER$$aconferenceObject
001021036 3367_ $$2ORCID$$aLECTURE_SPEECH
001021036 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1705385855_14266$$xAfter Call
001021036 520__ $$aAqueous zinc ion and metal-based batteries have attracted much attention towards the development of an alternative electrochemical energy storage technology beyond Li ion batteries [1]. Although there are several advantages of metal-based batteries, including high volumetric capacity (~8000 mAh/L), low anode potential (~0.7 V vs. SHE), safety and electrode abundance, the problem of metallic dendrite growth during cycling causing battery short circuit and failure, constituting safety hazards, severely limits the progress and further commercial exploitation [2, 3]. To this end, direct visualization of dendrites evolution under operando conditions is prerequisite for battery safety and longevity. Among the many operando/in situ techniques, the use of liquid phase transmission electron microscopy (LPTEM) [4] has been very effective in enabling a more detailed understanding of metal plating and stripping, where the ability to probe and visualize locally the key processes governing the dendrites formation. But it should be mentioned that it is still a challenge to perform high resolution and analytical electron microscopy studies in a liquid cell, especially with liquid flow function.In this work, we use LPTEM [5, 6] to directly visualize the electroplating and stripping of metals on micro electrodes of dedicated MEMS (MicroElectroMechanical System) chips at the nanoscale. By comparing the plating/striping under different chemical and/or electrochemical environment, including static or flow electrolyte conditions, and varying current densities, we show how metal dendrites can be effectively controlled on electrochemical cycling of the battery, as revealed by our operando LPTEM observations. In addition, by employing we recently developed liquid purging approach [7], which is based on the unique liquid supply system and the on-chip liquid flow capability, we are capable to perform 4D STEM electron diffraction analysis on the plating (Figure (a), Orientation mapped STEM image of deposited Zn in liquid by 4D STEM data analysis, Figure (b-e), reconstructed electron diffraction patterns corresponding to each mapped region).Following the experimental results, the growth of Zn dendrites can be effectively mitigated and directly minimized by flowing electrolyte into the cell and adjusting the current density, thus, providing new insights into the Aqueous metal batteries chemistry and the pathways for its optimization.
001021036 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001021036 7001_ $$0P:(DE-Juel1)180853$$aPark, Junbeom$$b1
001021036 7001_ $$0P:(DE-Juel1)171370$$aWeber, Dieter$$b2
001021036 7001_ $$0P:(DE-Juel1)180678$$aJo, Janghyun$$b3
001021036 7001_ $$0P:(DE-HGF)0$$aHugo Pérez Garza, H.$$b4$$eCorresponding author
001021036 7001_ $$0P:(DE-Juel1)180432$$aBasak, Shibabrata$$b5
001021036 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b6$$ufzj
001021036 7001_ $$0P:(DE-HGF)0$$aSun, Hongyu$$b7
001021036 909CO $$ooai:juser.fz-juelich.de:1021036$$pVDB
001021036 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a DENSsolutions, Netherlands$$b0
001021036 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180853$$aForschungszentrum Jülich$$b1$$kFZJ
001021036 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171370$$aForschungszentrum Jülich$$b2$$kFZJ
001021036 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180678$$aForschungszentrum Jülich$$b3$$kFZJ
001021036 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a DENSsolutions, Netherlands$$b4
001021036 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180432$$aForschungszentrum Jülich$$b5$$kFZJ
001021036 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b6$$kFZJ
001021036 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b6$$kRWTH
001021036 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a DENSsolutions, Netherlands$$b7
001021036 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001021036 9141_ $$y2023
001021036 920__ $$lyes
001021036 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
001021036 9201_ $$0I:(DE-Juel1)ER-C-20211020$$kER-C$$lER-C 2.0$$x1
001021036 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x2
001021036 980__ $$aconf
001021036 980__ $$aVDB
001021036 980__ $$aI:(DE-Juel1)IEK-9-20110218
001021036 980__ $$aI:(DE-Juel1)ER-C-20211020
001021036 980__ $$aI:(DE-Juel1)ER-C-1-20170209
001021036 980__ $$aUNRESTRICTED
001021036 981__ $$aI:(DE-Juel1)IET-1-20110218