001021071 001__ 1021071
001021071 005__ 20240709082108.0
001021071 037__ $$aFZJ-2024-00525
001021071 1001_ $$0P:(DE-Juel1)186816$$aBereck, Franz Philipp$$b0$$eCorresponding author$$ufzj
001021071 1112_ $$aAdvanced battery power conference$$cAachen$$d2023-04-27 - 2023-04-28$$wGermany
001021071 245__ $$aUncertainty weighted distribution of relaxation time analysis of battery impedance spectra using Gaussian process regression for noise estimation
001021071 260__ $$c2023
001021071 3367_ $$033$$2EndNote$$aConference Paper
001021071 3367_ $$2BibTeX$$aINPROCEEDINGS
001021071 3367_ $$2DRIVER$$aconferenceObject
001021071 3367_ $$2ORCID$$aCONFERENCE_POSTER
001021071 3367_ $$2DataCite$$aOutput Types/Conference Poster
001021071 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1705383257_14102$$xOther
001021071 520__ $$aA common technique for characterizing electrochemical systems is the combination of electrochemical impedance spectroscopy (EIS) and equivalent circuit modeling (ECM). However, choosing a suitable electrical circuit usually requires a-priori knowledge of the investigated system. By combining ECM with a distribution of relaxation times (DRT) analysis, relevant features found in the impedance data can be distinguished more clearly and, ideally, their number can be determined.Since the data acquired by EIS shows heteroscedastic noise behavior, using uniform weighting in the DRT can result in either under- or overregularization. To account for that, two methods for noise estimation are compared: statistical noise characterization by obtaining multiple EIS spectra of a commercial Lithium-ion coin cell at the same State of Charge (SoC) and Gaussian process regression (GPR) using only a single data set.
001021071 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001021071 536__ $$0G:(DE-Juel-1)E5430311$$aHAICU (E5430311)$$cE5430311$$x1
001021071 7001_ $$0P:(DE-Juel1)187114$$aBartsch, Christian Hippolyt$$b1
001021071 7001_ $$0P:(DE-Juel1)187115$$aJin, Limei$$b2$$ufzj
001021071 7001_ $$0P:(DE-Juel1)166415$$aMertens, Andreas$$b3
001021071 7001_ $$0P:(DE-Juel1)184961$$aScheurer, Christoph$$b4
001021071 7001_ $$0P:(DE-Juel1)162401$$aGranwehr, Josef$$b5$$ufzj
001021071 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b6$$ufzj
001021071 909CO $$ooai:juser.fz-juelich.de:1021071$$pVDB
001021071 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186816$$aForschungszentrum Jülich$$b0$$kFZJ
001021071 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)186816$$aRWTH Aachen$$b0$$kRWTH
001021071 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187115$$aForschungszentrum Jülich$$b2$$kFZJ
001021071 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)187115$$aRWTH Aachen$$b2$$kRWTH
001021071 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184961$$aForschungszentrum Jülich$$b4$$kFZJ
001021071 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162401$$aForschungszentrum Jülich$$b5$$kFZJ
001021071 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)162401$$aRWTH Aachen$$b5$$kRWTH
001021071 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b6$$kFZJ
001021071 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b6$$kRWTH
001021071 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001021071 9141_ $$y2023
001021071 920__ $$lyes
001021071 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
001021071 980__ $$aposter
001021071 980__ $$aVDB
001021071 980__ $$aI:(DE-Juel1)IEK-9-20110218
001021071 980__ $$aUNRESTRICTED
001021071 981__ $$aI:(DE-Juel1)IET-1-20110218