Confident Naturalness Explanation (CNE): A Framework to
Explain and Assess Patterns Forming Naturalness in
Fennoscandia with Confidence

1 Introdiction

Unaffected by extensive human interference, protected
natural areas represent regions of the Earth that main-
tain their original condition, largely untouched by ur-
banization, agriculture, logging, and other human activ-
ities. These regions host rich biodiversity and offer nu-
merous ecological advantages. They provide unique op-
portunities to study natural ecosystem processes, such
as water and pollination cycles.

Consequently, careful mapping and monitoring of
these areas are crucial for uncovering intricate geo-
ecological patterns essential for preserving their authen-
ticity. This explains the increasing focus on monitoring
and comprehending natural areas in both remote sens-
ing and environmental research.[S,|6]. Satellite imagery
enables consistent observation of remote protected ar-
eas, surpassing human accessibility challenges. It of-
fers efficient, cost-effective data collection while min-
imizing disturbances to delicate ecosystems. Utilizing
Machine Learning (ML) models, particularly Convolu-
tional Neural Networks (CNNs), enables precise clas-
sification of natural regions by analyzing satellite im-
agery datasets. To illustrate, [2] constructs a dataset and
a foundational CNN model that precisely classifies and
categorizes these protected natural regions.

In their research analyzing naturalness, Stomberg et
al. [[7] designed an inherently explanatory classification
network that generates attribution maps. These maps ef-
fectively highlight patterns indicative of protected nat-
ural areas in satellite imagery. [] also introduce an
approach that generates images with highlighted natu-
ralness patterns utilizing Activation Maximization and
Generative Adversarial Networks (GANs)[4, 8]. This
approach provides comprehensive and valid explana-
tions for the authenticity of naturalness.

Nevertheless, while these methods effectively iden-
tify designating patterns that characterize the authentic-
ity of natural regions, they face challenges in offering a

quantitative metric that precisely represents the contri-
bution of these discerning patterns. Additionally, these
methods do not tackle the issue of uncertainty associ-
ated with the assigned importance of each individual
pattern.

To overcome these limitations, we introduce an in-
novative approach that integrates explainability and un-
certainty quantification. Our aim is to establish a novel
metric that captures both the significance and confi-
dence associated with each pattern. Notably, our contri-
butions extend to developing certainty-aware segmen-
tation masks. These masks not only yield precise seg-
mentation outcomes but also pinpoint pixels where the
model showcases high uncertainty.

2 Framework

The cornerstone of our work is the development of the
Confident Naturalness Explanation (CNE) metric. This
metric is utilized to prioritize and arrange the contribut-
ing patterns based on their inherent quality, thereby
deepening our grasp of the concept of naturalness in
satellite imagery. Through these breakthroughs, we
collectively amplify the interpretability and confidence
levels of the model’s insights. As a result, we facili-
tate a more comprehensive understanding of the intri-
cate naturalness patterns inherent in satellite imagery.
The CNE framework consists of two main parts, the ex-
plainability and the uncertainty quantification part. In
the first part, we use a grey box approach [1]] to assign
an importance value to each pattern contributing to the
concept of naturalness. The grey box approach consists
of a black box semantic segmentation model that lacks
interpretability and a transparent model that is respon-
sible for explaining the decision-making mechanism of
the black box model. In the second part, we utilize the
MC-Dropout [3]] technique to quantify the uncertainty
in predicting the classes contributing to naturalness. We
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Figure 1: An Illustration for (CNE) framework. In the grey box, the input images are fed to the segmentation
model resulting in predicted segmentation masks; they are fed to logistic regression £(Z ¢, ;) with ground
truth labels of the input images to form a vector the represents the abundance of each pattern in the predicted
segmentation mask Z,; and classifies the input into protected natural areas and non-protected areas. For the
MC-Dropout, multiple sampled models are used to quantify the uncertainty of each pattern in the input image.
In the lower right corner, we combine the knowledge gained from the upper and lower part to calculate the CNE
metric and assign a quantifiable metric value to each pattern, reflecting its confident contribution to the concept of

naturalness.
Class Metric
moors and heathland 1.000000
peat bogs 0.811245
bare rock 0.653868
broad leaved forest 0.611532
sparsely vegetated areas 0.499592
conferous forest 0.448674
water courses 0.235142
glaciers and perpetual snow  0.217038
natural grassland 0.195522
water bodies 0.188863

Table 1: CNE metric values for different patterns con-
tributing to the concept of naturalness

integrate the gained knowledge to create the CNE met-
ric, which assigns confident importance to the patterns
forming naturalness in Fennoscandia.

3 Results and Discussion

Our investigation unveiled that various wetland patterns
possess notably high CNE metric values, ranging from
0.8 to 1. These scores signify the existence of high-
quality patterns that significantly contribute to the con-
cept of naturalness with high certainty. Wetlands are
pivotal ecosystems renowned for their roles in carbon
storage, safeguarding biodiversity, regulating water re-
sources, and providing niches for unique plant and an-
imal species finely adapted to their specific surround-
ings.

In contrast, Glaciers, Grasslands, and water bodies
exhibit relatively low-quality patterns, with an approx-
imate metric value of 0.2. These values indicate pat-
terns with a diminished contribution to the naturalness
concept, accompanied by heightened uncertainty. This
insight will be further expanded upon in the table[T] de-
tailing various patterns alongside their respective metric
values.
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