001021105 001__ 1021105
001021105 005__ 20240226075333.0
001021105 0247_ $$2doi$$a10.1103/PhysRevMaterials.7.L111401
001021105 0247_ $$2ISSN$$a2475-9953
001021105 0247_ $$2ISSN$$a2476-0455
001021105 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-00559
001021105 0247_ $$2WOS$$aWOS:001110065400002
001021105 037__ $$aFZJ-2024-00559
001021105 082__ $$a530
001021105 1001_ $$0P:(DE-HGF)0$$aKim, Junyeon$$b0$$eCorresponding author
001021105 245__ $$aOxide layer dependent orbital torque efficiency in ferromagnet/Cu/oxide heterostructures
001021105 260__ $$aCollege Park, MD$$bAPS$$c2023
001021105 3367_ $$2DRIVER$$aarticle
001021105 3367_ $$2DataCite$$aOutput Types/Journal article
001021105 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1708005422_1828
001021105 3367_ $$2BibTeX$$aARTICLE
001021105 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001021105 3367_ $$00$$2EndNote$$aJournal Article
001021105 520__ $$aThe utilization of orbital transport provides a versatile and efficient spin manipulation mechanism. As interest in orbital-mediated spin manipulation grows, we face a new issue to identify the underlying physics that determines the efficiency of orbital torque (OT). In this study, we systematically investigate the variation of OT governed by orbital Rashba-Edelstein effect at the Cu/oxide interface, as we change the oxide material. We find that OT varies by a factor of ∼2, depending on the oxide. Our results suggest that the active electronic interatomic interaction (hopping) between Cu and the oxygen atom is critical in determining OT. This also gives us an idea of what type of material factors is critical in forming a chiral orbital Rashba texture at the Cu/oxide interface.
001021105 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001021105 536__ $$0G:(GEPRIS)437337265$$aDFG project 437337265 - Spin+AFM-Dynamik: Antiferromagnetismus durch Drehimpulsströme und Gitterdynamik (A11) (437337265)$$c437337265$$x1
001021105 536__ $$0G:(GEPRIS)444844585$$aDFG project 444844585 - Statische und dynamische Kopplung von Gitter- und elektronischen Freiheitsgraden in magnetisch geordneten Übergangsmetalldichalkogenieden (B06) (444844585)$$c444844585$$x2
001021105 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001021105 7001_ $$0P:(DE-HGF)0$$aUzuhashi, Jun$$b1
001021105 7001_ $$0P:(DE-HGF)0$$aHorio, Masafumi$$b2
001021105 7001_ $$0P:(DE-HGF)0$$aSenoo, Tomoaki$$b3
001021105 7001_ $$0P:(DE-Juel1)178993$$aGo, Dongwook$$b4
001021105 7001_ $$0P:(DE-HGF)0$$aJo, Daegeun -$$b5
001021105 7001_ $$0P:(DE-HGF)0$$aSumi, Toshihide$$b6
001021105 7001_ $$0P:(DE-HGF)0$$aWada, Tetsuya$$b7
001021105 7001_ $$0P:(DE-HGF)0$$aMatsuda, Iwao$$b8
001021105 7001_ $$0P:(DE-HGF)0$$aOhkubo, Tadakatsu$$b9
001021105 7001_ $$0P:(DE-HGF)0$$aMitani, Seiji$$b10
001021105 7001_ $$0P:(DE-HGF)0$$aLee, Hyun-Woo$$b11
001021105 7001_ $$0P:(DE-HGF)0$$aOtani, YoshiChika$$b12
001021105 773__ $$0PERI:(DE-600)2898355-5$$a10.1103/PhysRevMaterials.7.L111401$$gVol. 7, no. 11, p. L111401$$n11$$pL111401$$tPhysical review materials$$v7$$x2475-9953$$y2023
001021105 8564_ $$uhttps://juser.fz-juelich.de/record/1021105/files/PhysRevMaterials.7.L111401.pdf$$yOpenAccess
001021105 8564_ $$uhttps://juser.fz-juelich.de/record/1021105/files/PhysRevMaterials.7.L111401.gif?subformat=icon$$xicon$$yOpenAccess
001021105 8564_ $$uhttps://juser.fz-juelich.de/record/1021105/files/PhysRevMaterials.7.L111401.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001021105 8564_ $$uhttps://juser.fz-juelich.de/record/1021105/files/PhysRevMaterials.7.L111401.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001021105 8564_ $$uhttps://juser.fz-juelich.de/record/1021105/files/PhysRevMaterials.7.L111401.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001021105 909CO $$ooai:juser.fz-juelich.de:1021105$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001021105 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan$$b0
001021105 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan$$b1
001021105 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan$$b2
001021105 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan$$b3
001021105 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178993$$aForschungszentrum Jülich$$b4$$kFZJ
001021105 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Physics, Pohang University of Science and Technology, Pohang 37673, South Korea$$b5
001021105 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan$$b6
001021105 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan$$b7
001021105 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan$$b8
001021105 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Trans-scale Quantum Science Institute, The University of Tokyo, Tokyo 113-8654, Japan$$b8
001021105 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan$$b9
001021105 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan$$b10
001021105 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Physics, Pohang University of Science and Technology, Pohang 37673, South Korea$$b11
001021105 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Trans-scale Quantum Science Institute, The University of Tokyo, Tokyo 113-8654, Japan$$b12
001021105 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan$$b12
001021105 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan$$b12
001021105 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001021105 9141_ $$y2023
001021105 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
001021105 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001021105 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV MATER : 2022$$d2023-08-29
001021105 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-29
001021105 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-29
001021105 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-29
001021105 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-29
001021105 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-29
001021105 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-29
001021105 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-29
001021105 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-29
001021105 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001021105 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
001021105 980__ $$ajournal
001021105 980__ $$aVDB
001021105 980__ $$aI:(DE-Juel1)PGI-1-20110106
001021105 980__ $$aI:(DE-Juel1)IAS-1-20090406
001021105 980__ $$aUNRESTRICTED
001021105 9801_ $$aFullTexts