001     1021105
005     20240226075333.0
024 7 _ |a 10.1103/PhysRevMaterials.7.L111401
|2 doi
024 7 _ |a 2475-9953
|2 ISSN
024 7 _ |a 2476-0455
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-00559
|2 datacite_doi
024 7 _ |a WOS:001110065400002
|2 WOS
037 _ _ |a FZJ-2024-00559
082 _ _ |a 530
100 1 _ |a Kim, Junyeon
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Oxide layer dependent orbital torque efficiency in ferromagnet/Cu/oxide heterostructures
260 _ _ |a College Park, MD
|c 2023
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1708005422_1828
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The utilization of orbital transport provides a versatile and efficient spin manipulation mechanism. As interest in orbital-mediated spin manipulation grows, we face a new issue to identify the underlying physics that determines the efficiency of orbital torque (OT). In this study, we systematically investigate the variation of OT governed by orbital Rashba-Edelstein effect at the Cu/oxide interface, as we change the oxide material. We find that OT varies by a factor of ∼2, depending on the oxide. Our results suggest that the active electronic interatomic interaction (hopping) between Cu and the oxygen atom is critical in determining OT. This also gives us an idea of what type of material factors is critical in forming a chiral orbital Rashba texture at the Cu/oxide interface.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
536 _ _ |a DFG project 437337265 - Spin+AFM-Dynamik: Antiferromagnetismus durch Drehimpulsströme und Gitterdynamik (A11) (437337265)
|0 G:(GEPRIS)437337265
|c 437337265
|x 1
536 _ _ |a DFG project 444844585 - Statische und dynamische Kopplung von Gitter- und elektronischen Freiheitsgraden in magnetisch geordneten Übergangsmetalldichalkogenieden (B06) (444844585)
|0 G:(GEPRIS)444844585
|c 444844585
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Uzuhashi, Jun
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Horio, Masafumi
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Senoo, Tomoaki
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Go, Dongwook
|0 P:(DE-Juel1)178993
|b 4
700 1 _ |a Jo, Daegeun -
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Sumi, Toshihide
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Wada, Tetsuya
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Matsuda, Iwao
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Ohkubo, Tadakatsu
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Mitani, Seiji
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Lee, Hyun-Woo
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Otani, YoshiChika
|0 P:(DE-HGF)0
|b 12
773 _ _ |a 10.1103/PhysRevMaterials.7.L111401
|g Vol. 7, no. 11, p. L111401
|0 PERI:(DE-600)2898355-5
|n 11
|p L111401
|t Physical review materials
|v 7
|y 2023
|x 2475-9953
856 4 _ |u https://juser.fz-juelich.de/record/1021105/files/PhysRevMaterials.7.L111401.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1021105/files/PhysRevMaterials.7.L111401.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1021105/files/PhysRevMaterials.7.L111401.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1021105/files/PhysRevMaterials.7.L111401.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1021105/files/PhysRevMaterials.7.L111401.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1021105
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)178993
910 1 _ |a Department of Physics, Pohang University of Science and Technology, Pohang 37673, South Korea
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-HGF)0
910 1 _ |a Trans-scale Quantum Science Institute, The University of Tokyo, Tokyo 113-8654, Japan
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-HGF)0
910 1 _ |a National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
|0 I:(DE-HGF)0
|b 9
|6 P:(DE-HGF)0
910 1 _ |a National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
|0 I:(DE-HGF)0
|b 10
|6 P:(DE-HGF)0
910 1 _ |a Department of Physics, Pohang University of Science and Technology, Pohang 37673, South Korea
|0 I:(DE-HGF)0
|b 11
|6 P:(DE-HGF)0
910 1 _ |a Trans-scale Quantum Science Institute, The University of Tokyo, Tokyo 113-8654, Japan
|0 I:(DE-HGF)0
|b 12
|6 P:(DE-HGF)0
910 1 _ |a Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
|0 I:(DE-HGF)0
|b 12
|6 P:(DE-HGF)0
910 1 _ |a Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan
|0 I:(DE-HGF)0
|b 12
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2023
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV MATER : 2022
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-29
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21