001021108 001__ 1021108
001021108 005__ 20250129092442.0
001021108 037__ $$aFZJ-2024-00562
001021108 041__ $$aEnglish
001021108 1001_ $$0P:(DE-HGF)0$$aBhat, Swasthik Baje Shankarakrishna$$b0$$eFirst author
001021108 1112_ $$aDPG Frühjahrstagung SKM$$cDresden$$d2023-03-26 - 2023-03-31$$wGermany
001021108 245__ $$aDesign of Power Efficient Digital Low-Dropout Circuit for Quantum Computers
001021108 260__ $$c2023
001021108 3367_ $$033$$2EndNote$$aConference Paper
001021108 3367_ $$2DataCite$$aOther
001021108 3367_ $$2BibTeX$$aINPROCEEDINGS
001021108 3367_ $$2DRIVER$$aconferenceObject
001021108 3367_ $$2ORCID$$aLECTURE_SPEECH
001021108 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1705323551_11854$$xAfter Call
001021108 502__ $$cTechnische Universität Hamburg
001021108 520__ $$aQuantum computing is an approach to enable new computing paradigms with qubits as the computing elements that require individual tuning. A limitation in current setups is the number of controllable qubits. To scale the number of qubits, a close integration of control circuits close to the qubits in the cryogenic environment is required. However, to deal with these cryostats* minimal thermal power budget, ultra-low power dissipation is required, also for biasing circuits.This contribution presents the design and simulation results of a power-efficient digital low-dropout regulator developed with a commercial 22nm FDSOI technology. It is expected that the circuit will enable on-chip biasing for future quantum computers based on Cryogenic Electronics operating at 4 K. Unlike its Analog counterpart integrated Digital LDO is not prone to process and mismatches delivering high efficiency at the same time The circuit concept and the system model investigation performed via Matlab-Simulink will be showed, as well as the expected circuit performance.
001021108 536__ $$0G:(DE-HGF)POF4-5223$$a5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001021108 7001_ $$0P:(DE-Juel1)177765$$aCabrera Galicia, Alfonso Rafael$$b1$$eCorresponding author$$ufzj
001021108 7001_ $$0P:(DE-Juel1)176328$$aAshok, Arun$$b2$$ufzj
001021108 7001_ $$0P:(DE-Juel1)171680$$aVliex, Patrick$$b3$$ufzj
001021108 7001_ $$0P:(DE-Juel1)145837$$aZambanini, Andre$$b4$$ufzj
001021108 7001_ $$0P:(DE-Juel1)159350$$aGrewing, Christian$$b5$$ufzj
001021108 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, Stefan$$b6$$ufzj
001021108 8564_ $$uhttps://www.dpg-verhandlungen.de/year/2023/conference/skm/part/hl/session/50/contribution/11
001021108 909CO $$ooai:juser.fz-juelich.de:1021108$$pVDB
001021108 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
001021108 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177765$$aForschungszentrum Jülich$$b1$$kFZJ
001021108 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176328$$aForschungszentrum Jülich$$b2$$kFZJ
001021108 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171680$$aForschungszentrum Jülich$$b3$$kFZJ
001021108 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145837$$aForschungszentrum Jülich$$b4$$kFZJ
001021108 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159350$$aForschungszentrum Jülich$$b5$$kFZJ
001021108 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b6$$kFZJ
001021108 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5223$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001021108 9141_ $$y2023
001021108 920__ $$lyes
001021108 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
001021108 980__ $$aconf
001021108 980__ $$aVDB
001021108 980__ $$aI:(DE-Juel1)ZEA-2-20090406
001021108 980__ $$aUNRESTRICTED
001021108 981__ $$aI:(DE-Juel1)PGI-4-20110106