001     1021120
005     20250401102818.0
024 7 _ |a 10.5194/gmd-17-261-2024
|2 doi
024 7 _ |a 1991-959X
|2 ISSN
024 7 _ |a 1991-9603
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-00574
|2 datacite_doi
024 7 _ |a WOS:001166577100001
|2 WOS
037 _ _ |a FZJ-2024-00574
082 _ _ |a 550
100 1 _ |a Bishnoi, Abhiraj
|0 P:(DE-Juel1)187016
|b 0
|e Corresponding author
245 _ _ |a Earth system modeling on modular supercomputing architecture: coupled atmosphere–ocean simulations with ICON 2.6.6-rc
260 _ _ |a Katlenburg-Lindau
|c 2024
|b Copernicus
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1707807350_20606
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The confrontation of complex Earth system model (ESM) codes with novel supercomputing architectures poses challenges to efficient modeling and job submission strategies. The modular setup of these models naturally fits a modular supercomputing architecture (MSA), which tightly integrates heterogeneous hardware resources into a larger and more flexible high-performance computing (HPC) system. While parts of the ESM codes can easily take advantage of the increased parallelism and communication capabilities of modern GPUs, others lag behind due to the long development cycles or are better suited to run on classical CPUs due to their communication and memory usage patterns. To better cope with these imbalances between the development of the model components, we performed benchmark campaigns on the Jülich Wizard for European Leadership Science (JUWELS) modular HPC system. We enabled the weather and climate model Icosahedral Nonhydrostatic (ICON) to run in a coupled atmosphere–ocean setup, where the ocean and the model I/O is running on the CPU Cluster, while the atmosphere is simulated simultaneously on the GPUs of JUWELS Booster (ICON-MSA). Both atmosphere and ocean are running globally with a resolution of 5 km. In our test case, an optimal configuration in terms of model performance (core hours per simulation day) was found for the combination of 84 GPU nodes on the JUWELS Booster module to simulate the atmosphere and 80 CPU nodes on the JUWELS Cluster module, of which 63 nodes were used for the ocean simulation and the remaining 17 nodes were reserved for I/O. With this configuration the waiting times of the coupler were minimized. Compared to a simulation performed on CPUs only, the MSA approach reduces energy consumption by 45 % with comparable runtimes. ICON-MSA is able to scale up to a significant portion of the JUWELS system, making best use of the available computing resources. A maximum throughput of 170 simulation days per day (SDPD) was achieved when running ICON on 335 JUWELS Booster nodes and 268 Cluster nodes.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a 5122 - Future Computing & Big Data Systems (POF4-512)
|0 G:(DE-HGF)POF4-5122
|c POF4-512
|f POF IV
|x 1
536 _ _ |a AIDAS - Joint Virtual Laboratory for AI, Data Analytics and Scalable Simulation (aidas_20200731)
|0 G:(DE-Juel-1)aidas_20200731
|c aidas_20200731
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Stein, Olaf
|0 P:(DE-Juel1)3709
|b 1
|e Corresponding author
700 1 _ |a Meyer, Catrin I.
|0 P:(DE-Juel1)156465
|b 2
700 1 _ |a Redler, René
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Eicker, Norbert
|0 P:(DE-Juel1)132090
|b 4
|u fzj
700 1 _ |a Haak, Helmuth
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Hoffmann, Lars
|0 P:(DE-Juel1)129125
|b 6
700 1 _ |a Klocke, Daniel
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Kornblueh, Luis
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Suarez, Estela
|0 P:(DE-Juel1)142361
|b 9
|u fzj
773 _ _ |a 10.5194/gmd-17-261-2024
|g Vol. 17, no. 1, p. 261 - 273
|0 PERI:(DE-600)2456725-5
|n 1
|p 261 - 273
|t Geoscientific model development
|v 17
|y 2024
|x 1991-959X
856 4 _ |u https://juser.fz-juelich.de/record/1021120/files/Invoice_Helmholtz-PUC-2024-8.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1021120/files/FZJ-2024-00574.pdf
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/1021120/files/Invoice_Helmholtz-PUC-2024-8.gif?subformat=icon
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/1021120/files/Invoice_Helmholtz-PUC-2024-8.jpg?subformat=icon-1440
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/1021120/files/Invoice_Helmholtz-PUC-2024-8.jpg?subformat=icon-180
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/1021120/files/Invoice_Helmholtz-PUC-2024-8.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1021120/files/FZJ-2024-00574.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1021120/files/FZJ-2024-00574.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1021120/files/FZJ-2024-00574.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1021120/files/FZJ-2024-00574.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1021120
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)3709
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)156465
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)132090
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129125
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)142361
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-512
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Supercomputing & Big Data Infrastructures
|9 G:(DE-HGF)POF4-5122
|x 1
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-25
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-12-20T09:29:04Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-12-20T09:29:04Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-25
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-25
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Open peer review
|d 2022-12-20T09:29:04Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-21
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21