001021124 001__ 1021124
001021124 005__ 20250129092442.0
001021124 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-00578
001021124 037__ $$aFZJ-2024-00578
001021124 041__ $$aEnglish
001021124 1001_ $$0P:(DE-Juel1)177765$$aCabrera Galicia, Alfonso Rafael$$b0$$eCorresponding author$$ufzj
001021124 1112_ $$aIEEE Workshop on Quantum Computing: Devices, Cryogenic Electronics and Packaging$$cMilpitas$$d2023-10-24 - 2023-10-25$$gIEEE QC-DCEP$$wUSA
001021124 245__ $$aPower Integrity Challenges in Large Scale Quantum Computers and Solutions$$f2023-10-25 - 
001021124 260__ $$c2023
001021124 3367_ $$033$$2EndNote$$aConference Paper
001021124 3367_ $$2DataCite$$aOther
001021124 3367_ $$2BibTeX$$aINPROCEEDINGS
001021124 3367_ $$2ORCID$$aLECTURE_SPEECH
001021124 3367_ $$0PUB:(DE-HGF)31$$2PUB:(DE-HGF)$$aTalk (non-conference)$$btalk$$mtalk$$s1705399487_3859$$xInvited
001021124 3367_ $$2DINI$$aOther
001021124 502__ $$cUniversität Duisburg-Essen
001021124 520__ $$aThe ICs belonging to a quantum computer need stable and regulated supply voltages for proper operation, e.g. the phase noise of RF oscillators is dependent on their power supply quality. Moreover, the power supply needs of a large scale QC will be challenging to satisfy by simply using supply lines connecting the ICs inside the cryostat with the power sources at room temperature. This is because voltage ripples (e.g. pulse tube vibration induced noise), ground loops induced noise and dynamic load currents may affect the ICs supply lines and compromise the QC power integrity. Furthermore, it is expected that the connection lines available in large scale QCs be scarce due to the limited cryostat space. Therefore, the usage of several lines to set different supply domains may not be possible and be a restricting factor for the QCs scalability.This presentation will address the cryogenic power integrity topic by providing:— A review of the power integrity challenges faced by cryogenic ICs. — Solution approaches focused on the cryogenic setup and the use of cryogenic voltage regulators. — Cryogenic characterization and modelling of FDSOI technology (22 nm) for ICs design. — Design and test of cryogenic voltage references, based on cryogenic Vth saturation and Vth difference. — Design and test of a cryogenic voltage regulator. — Design of Digital LDOs for cryogenic applications. — An application case: cryogenic voltage regulator applied to power the reference circuit of a cryogenic DAC used for the DC voltage setting of a Single Electron Transistor Quantum Dot
001021124 536__ $$0G:(DE-HGF)POF4-5223$$a5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001021124 7001_ $$0P:(DE-Juel1)176328$$aAshok, Arun$$b1$$ufzj
001021124 7001_ $$0P:(DE-Juel1)171680$$aVliex, Patrick$$b2$$ufzj
001021124 7001_ $$0P:(DE-Juel1)180854$$aSchreckenberg, Lea$$b3$$ufzj
001021124 7001_ $$0P:(DE-Juel1)196006$$aChava, Phanish$$b4$$ufzj
001021124 7001_ $$0P:(DE-Juel1)194485$$aBaje Shankarakrishna Bhat, Swasthik$$b5
001021124 7001_ $$0P:(DE-Juel1)156521$$aKruth, Andre$$b6$$ufzj
001021124 7001_ $$0P:(DE-Juel1)145837$$aZambanini, Andre$$b7$$ufzj
001021124 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, Stefan$$b8$$ufzj
001021124 8564_ $$uhttps://attend.ieee.org/qc-dcep/abstracts/#galicia
001021124 8564_ $$uhttps://juser.fz-juelich.de/record/1021124/files/Abstract.pdf$$yOpenAccess
001021124 8564_ $$uhttps://juser.fz-juelich.de/record/1021124/files/QC-DCEP2023_Cabrera-Galicia.pdf$$yOpenAccess
001021124 8564_ $$uhttps://juser.fz-juelich.de/record/1021124/files/Abstract.gif?subformat=icon$$xicon$$yOpenAccess
001021124 8564_ $$uhttps://juser.fz-juelich.de/record/1021124/files/Abstract.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001021124 8564_ $$uhttps://juser.fz-juelich.de/record/1021124/files/Abstract.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001021124 8564_ $$uhttps://juser.fz-juelich.de/record/1021124/files/Abstract.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001021124 8564_ $$uhttps://juser.fz-juelich.de/record/1021124/files/QC-DCEP2023_Cabrera-Galicia.gif?subformat=icon$$xicon$$yOpenAccess
001021124 8564_ $$uhttps://juser.fz-juelich.de/record/1021124/files/QC-DCEP2023_Cabrera-Galicia.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001021124 8564_ $$uhttps://juser.fz-juelich.de/record/1021124/files/QC-DCEP2023_Cabrera-Galicia.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001021124 8564_ $$uhttps://juser.fz-juelich.de/record/1021124/files/QC-DCEP2023_Cabrera-Galicia.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001021124 909CO $$ooai:juser.fz-juelich.de:1021124$$pdriver$$pVDB$$popen_access$$popenaire
001021124 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177765$$aForschungszentrum Jülich$$b0$$kFZJ
001021124 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176328$$aForschungszentrum Jülich$$b1$$kFZJ
001021124 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171680$$aForschungszentrum Jülich$$b2$$kFZJ
001021124 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180854$$aForschungszentrum Jülich$$b3$$kFZJ
001021124 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196006$$aForschungszentrum Jülich$$b4$$kFZJ
001021124 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156521$$aForschungszentrum Jülich$$b6$$kFZJ
001021124 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145837$$aForschungszentrum Jülich$$b7$$kFZJ
001021124 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b8$$kFZJ
001021124 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5223$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001021124 9141_ $$y2023
001021124 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001021124 920__ $$lyes
001021124 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
001021124 9801_ $$aFullTexts
001021124 980__ $$atalk
001021124 980__ $$aVDB
001021124 980__ $$aUNRESTRICTED
001021124 980__ $$aI:(DE-Juel1)ZEA-2-20090406
001021124 981__ $$aI:(DE-Juel1)PGI-4-20110106