

POWER INTEGRITY CHALLENGES IN LARGE SCALE QUANTUM COMPUTERS AND SOLUTIONS

IEEE Workshop on Quantum Computing: Devices, Cryogenic Electronics and Packaging Milpitas, CA USA

25.10.2023 | A. R. CABRERA-GALICIA, ZEA-2

OVERVIEW

- Motivation
- Power Integrity Challenges for Cryogenic ICs
- Proposed Solution: Cryogenic Voltage Regulation
- Application Case: Voltage References for DAC
- Conclusions

MOTIVATION

Brief summary

- Quantum computing will speed up solution finding in drug design, cryptography, optimization.
- Universal quantum computers needs 10⁶ to 10⁹ physical qubit, due to non-idealities [1].
- Current RT approaches are not fully scalable [2],[3].

Local cryo-electronics

with system integration view is needed!

Regulated and stable supply voltage in situ is required for optimum operation.

25.10.2023

[1] Mohseni, Masoud, et al. "Commercialize quantum technologies in five years." *Nature* 543.7644 (2017): 171-174. [2] Charbon, Edoardo, et al. "Cryogenic CMOS circuits and systems: Challenges and opportunities in designing the electronic interface for quantum processors." *IEEE Microwave Magazine* 22.1 (2020): 60-78. [3] Degenhardt, C., et al. "Systems engineering of cryogenic CMOS electronics for scalable quantum computers." *2019 IEEE International Symposium on Circuits and Systems (ISCAS)*. IEEE, 2019.

OVERVIEW

- Motivation
- Power Integrity Challenges for Cryogenic ICs
- Proposed Solution: Cryogenic Voltage Regulation
- Application Case: Voltage References for DAC
- Conclusions

Vibration-induced electrical noise

Cryocooler (e. g. pulse tube) in dilution fridge produces vibrations [4],[5].

[4] Kalra, Rachpon, et al. "Vibration-induced electrical noise in a cryogen-free dilution refrigerator: Characterization, mitigation, and impact on qubit coherence." *Review of Scientific Instruments* 87.7 (2016).

[5] Lake Shore Cryoelectronics, "Pulse tube cryocoolers vs Gifford-McMahon cryocoolers,"

https://www.lakeshore.com/products/product-detail/janis/pulse-tube-cryocoolers-vs.-gifford-mcmahon-cryocoolers.

Ground loop in Gifford-McMahon cryocooler (attoDRY800)

^[7] Sumitomo Heavy Industries, Ltd., https://www.shicryogenics.com/

Ground loop impact on active probe (41800A) as example

Power distribution for cryogenic ICs

- Complex ICs for Quantum Computing need local power distribution networks due to:
 - Limited connections between Cryo. stage and RT.
 - Different power domains needed; Analog, Digital, Mixed Signal.
 - No commercial DC-DC converters for Cryo. (4K ≤ Temp. ≤ 7K) [9], [10]

25.10.2023

OVERVIEW

- Motivation
- Power Integrity Challenges for Cryogenic ICs
- Proposed Solution: Cryogenic Voltage Regulation
- Application Case: Voltage References for DAC
- Conclusions

CRYOGENIC VOLTAGE REGULATION

Prototype

- IC (22 nm FDSOI): Voltage Ref., Voltage Reg. and JTAG interface^[11].
- PCB for good cryocooler IC thermal coupling.
- Thermal pad to break ground loop.
- Test temps.: [300 K, 6 K].

Cryogenic electrical characterization of 22 nm FDSOI

• Setup:

- Gifford-McMahon cryocooler (attoDRY800); 7K with needle probing station.
- Semiconductor device analyzer (B1500A).

• Objective:

to develop a cryogenic simulation model for 22 nm FDSOI; QSolid collaborative project [12]

Cryogenic electrical characterization of 22 nm FDSOI

25.10.2023

Voltage reference

- Cryogenic Vth saturation as working principle.
- The circuit saturates MREF while in Vth saturation temperature region.
- Simple and without post-fabrication correction.

Voltage reference cryogenic test

Voltage regulator

- NMOS pass element (MPass); better PSRR than PMOS [14].
- MPass Vth reduction via backgate for low Vsup. requirement.
- VReg. tuning via feedback modification with JTAG.
- Cryogenic-stable RC compensation network [10].

Voltage regulator cryogenic test; load regulation

Voltage regulator cryogenic test; noise spectral density

Higher temp. due to thermal pad and imperfect thermalization of cables; improvement on progress.

V_{Ref.} + V_{Reg.} cryogenic test

Transient response and spectral noise density measured at cryo.

OVERVIEW

- Motivation
- Power Integrity Challenges for Cryogenic ICs
- Proposed Solution: Cryogenic Voltage Regulation
- Application Case: Voltage References for DAC
- Conclusions

APPLICATION CASE: VOLTAGE REFERENCES FOR DAC

V_{Reg.} + **DAC** at cryogenic temperatures

- Objective: to showcase the operation of multiple ICs on Cryo.
- DAC (65 nm CMOS) [12] VReg. (22 nm FDSOI).

APPLICATION CASE: VOLTAGE REFERENCES FOR DAC

V_{Reg.} + **DAC** at cryogenic temperatures

First trial: quick and dirty!

APPLICATION CASE: VOLTAGE REFERENCES FOR DAC

V_{Reg.} + **DAC** at cryogenic temperatures

PCB temp. is 11 K; optimization on cryocooler cabling is needed.

Dedicated PCB for both ICs will improve the area and connections.

Work on progress; first results.

CONCLUSIONS

- Cryogenic ICs need local power distribution network.
- Dilution refrigerators challenges: vibration induced noise, ground loops, limited connections.
- ICs and physical setups are the solution to the challenges.

THANKS FOR YOUR ATTENTION

ZEA-2

André Zambanini

Carsten Degenhardt

Christian Grewing

Stefan van Waasen

Arun Ashok

Andre Kruth

Dennis Nielinger

Patrick Vliex

Alfonso Rafael Cabrera Galicia

Lea Schreckenberg

Phanish Chava

Swasthik B. S. Bhat

IC Development Team

REFERENCES

- [1] Mohseni, Masoud, et al. "Commercialize quantum technologies in five years." *Nature* 543.7644 (2017): 171-174.
- [2] Charbon, Edoardo, et al. "Cryogenic CMOS circuits and systems: Challenges and opportunities in designing the electronic interface for quantum processors." *IEEE Microwave Magazine* 22.1 (2020): 60-78.
- [3] Degenhardt, C., et al. "Systems engineering of cryogenic CMOS electronics for scalable quantum computers." 2019 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2019.
- [4] Kalra, Rachpon, et al. "Vibration-induced electrical noise in a cryogen-free dilution refrigerator: Characterization, mitigation, and impact on qubit coherence." Review of Scientific Instruments 87.7 (2016).
- [5] Lake Shore Cryoelectronics, "Pulse tube cryocoolers vs Gifford-McMahon cryocoolers," https://www.lakeshore.com/products/product-detail/janis/pulse-tube-cryocoolers-vs.-gifford-mcmahon-cryocoolers.
- [6] Ott, Henry W. Electromagnetic compatibility engineering. John Wiley & Sons, 2011.
- [7] Sumitomo Heavy Industries, Ltd., https://www.shicryogenics.com/
- [8] attocube systems AG, https://www.attocube.com/en
- [9] Homulle, Harald, et al. "Design techniques for a stable operation of cryogenic field-programmable gate arrays." Review of Scientific Instruments 89.1 (2018): 014703.
- [10] H. Homulle and E. Charbon, "Cryogenic low-dropout voltage regulators for stable low-temperature electronics," Cryogenics, vol. 95, 2018.
- [11] A. R. Cabrera-Galicia et al., " A Cryogenic Voltage Regulator with Integrated Voltage Reference in 22 nm FDSOI Technology," to be published in 2023 IEEE 19th Asia Pacific Conference on Circuits and Systems (APCCAS), 2023.
- [12] The QSolid consortium, "QSolid, Quantum Computer in the Solid State," https://www.q-solid.de/.
- [13] A. R. Cabrera-Galicia et al., "Towards the Development of Cryogenic Integrated Power Management Units," 2022 IEEE 15th Workshop on Low Temperature Electronics (WOLTE).
- [14] B. Razavi, "The low dropout regulator [a circuit for all seasons]," IEEE Solid-State Circuits Magazine, vol. 11, no. 2, 2019.
- [15] Vliex, Patrick, et al. "Bias Voltage DAC Operating at Cryogenic Temperatures for Solid-State Qubit Applications." IEEE solid-state circuits letters 3 (2020): 218-221.

V_{Ref.} with respect to V_{Sup.} at 6K

Differential amplifier used by regulator

27

PSRR \approx

$$A_{\rm DA} \approx g_{m_{7,8}} \cdot (R_{1,2} || r_{o_{7,8}} || r_{o_{13,14}}) \cdot g_{m_{12,15}} \cdot Z_{\rm out}$$
 (1)

$$A_{\rm DA} \approx g_{m_{7,8}} \cdot (R_{1,2} || r_{o_{7,8}} || r_{o_{13,14}}) \cdot g_{m_{12,15}} \cdot Z_{\rm out} (1)$$

$$A_{\rm LG} \approx A_{\rm DA} \cdot \frac{R_{\rm F2}}{R_{\rm F1} + R_{\rm F2}}$$
(2)

$$LR \approx \frac{1}{g_{m_{\text{M Pass}}} \cdot A_{\text{LG}}} \tag{3}$$

$$\frac{1}{g_{m_{\text{M Pass}}} \cdot r_{o_{\text{M Pass}}} \cdot A_{\text{LG}}} \tag{4}$$

V_{Reg.} with respect to V_{Sup.} at 6K

28

V_{Reg.} PSRR at V_{Sup.}= 2V and Temp. = 6K

