
POWER INTEGRITY CHALLENGES IN LARGE SCALE 

QUANTUM COMPUTERS AND SOLUTIONS

25.10.2023 | A. R. CABRERA-GALICIA, ZEA-2 

25.10.2023

IEEE Workshop on Quantum Computing: Devices, Cryogenic Electronics and Packaging

Milpitas, CA USA



OVERVIEW

• Motivation

• Power Integrity Challenges for Cryogenic ICs

• Proposed Solution: Cryogenic Voltage Regulation

• Application Case: Voltage References for DAC

• Conclusions

25.10.2023 2



• Quantum computing will speed up solution finding 

in drug design, cryptography, optimization. 

• Universal quantum computers needs 106 to 109

physical qubit, due to non-idealities [1].

• Current RT approaches are not fully scalable [2],[3].

Local cryo-electronics

with system integration view is needed!

MOTIVATION
Brief summary
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Regulated and stable supply voltage in
situ is required for optimum operation.
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POWER INTEGRITY CHALLENGES FOR CRYOGENIC ICS
Vibration-induced electrical noise 
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Cryocooler ( e. g. pulse tube) in dilution fridge produces vibrations [4],[5].
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POWER INTEGRITY CHALLENGES FOR CRYOGENIC ICS
Ground loop in Gifford-McMahon cryocooler (attoDRY800) 
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POWER INTEGRITY CHALLENGES FOR CRYOGENIC ICS
Ground loop impact on active probe (41800A) as example
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Passive load coupled to 
GM cryocooler at 6K.

Active probe connected 
to passive load in GM 

cryocooler at 6K

Due to JTAG debugger.Low freq. lab noise…



POWER INTEGRITY CHALLENGES FOR CRYOGENIC ICS

• Complex ICs for Quantum Computing need local power 

distribution networks due to:

• Limited connections between Cryo. stage and RT.

• Different power domains needed; Analog, Digital, 

Mixed Signal.

• No commercial DC-DC converters for Cryo. 

(4K ≤ Temp. ≤ 7K) [9], [10]   

Power distribution for cryogenic ICs
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CRYOGENIC VOLTAGE REGULATION

• IC (22 nm FDSOI): Voltage Ref., Voltage Reg. 

and JTAG interface[11].

• PCB for good cryocooler – IC thermal 

coupling.

• Thermal pad to break ground loop.

• Test temps.: [300 K, 6 K].

Prototype 
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[11] A. R. Cabrera-Galicia et al., " A Cryogenic Voltage Regulator with Integrated Voltage Reference in 22 nm FDSOI Technology," to be published in 2023 IEEE 19th  

Asia Pacific Conference on Circuits and Systems (APCCAS), 2023.
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CRYOGENIC IC DESIGN FOR VOLTAGE REGULATION
Cryogenic electrical characterization of 22 nm FDSOI
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• Setup:

• Gifford-McMahon cryocooler

(attoDRY800); 7K 

with needle probing station.

• Semiconductor device analyzer 

(B1500A).

• Objective: 

to develop a cryogenic simulation 

model for 22 nm FDSOI; 

QSolid collaborative project [12]

[12] The QSolid consortium, “QSolid, Quantum Computer in the Solid State,” https://www.q-solid.de/
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CRYOGENIC IC DESIGN FOR VOLTAGE REGULATION
Cryogenic electrical characterization of 22 nm FDSOI
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Common electrical 
behavior at cryo

Transconductance
increase with 

temps reduction. 

Vth saturation 
at temps. lower 

than 60K

Vth tuning via 
backgate

[13] A. R. Cabrera-Galicia et al., "Towards the Development of Cryogenic Integrated Power Management Units," 2022 IEEE 15th Workshop on Low Temperature 

Electronics (WOLTE).
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CRYOGENIC IC DESIGN FOR VOLTAGE REGULATION
Voltage reference
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• Cryogenic Vth saturation as working principle.

• The circuit saturates MREF while in Vth saturation 

temperature region.

• Simple and without post-fabrication correction.

[11] A. R. Cabrera-Galicia et al., " A Cryogenic Voltage Regulator with Integrated Voltage Reference in 22 nm FDSOI Technology," to be published in 2023 IEEE 19th  

Asia Pacific Conference on Circuits and Systems (APCCAS), 2023.
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CRYOGENIC IC DESIGN FOR VOLTAGE REGULATION
Voltage reference cryogenic test
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VRef. Sample 1 is 
compared with Vth

from I/O NMOS. 

5 sample chips are 
tested.

TC = 300 ppm/K 
@ Temp = [6 K, 50 K]

[11] A. R. Cabrera-Galicia et al., " A Cryogenic Voltage Regulator with Integrated Voltage Reference in 22 nm FDSOI Technology," to be published in 2023 IEEE 19th  

Asia Pacific Conference on Circuits and Systems (APCCAS), 2023.
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CRYOGENIC IC DESIGN FOR VOLTAGE REGULATION

• NMOS pass element (MPass); better PSRR than PMOS [14].

• MPass Vth reduction via backgate for low VSup. requirement.

• VReg. tuning via feedback modification with JTAG.

• Cryogenic-stable RC compensation network [10]. 

Voltage regulator

25.10.2023

Ext. 

Comp.
Ext. 

Load

𝑴𝑷𝒂𝒔𝒔 

𝑪𝑪𝟐 
𝑹𝟏 

𝑹𝟐 

0.5 V

𝑹𝑳 𝑪𝑳 

𝑪𝑪𝟏 

𝑹𝑪𝟏 

VReg.

Inside Chip

𝑴𝑼𝑿𝑨𝒏𝒂 

Ext.

Deco. 

𝑪𝑯𝑭 𝑪𝑳𝑭 

𝑩𝑩𝑮 

𝑩𝑹𝒔 

VRef.

[10] H. Homulle and E. Charbon, “Cryogenic low-dropout voltage regulators for stable low-temperature electronics,” Cryogenics, vol. 95, 2018.

[14] B. Razavi, “The low dropout regulator [a circuit for all seasons],” IEEE Solid-State Circuits Magazine, vol. 11, no. 2, 2019.
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CRYOGENIC IC DESIGN FOR VOLTAGE REGULATION
Voltage regulator cryogenic test; load regulation
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VReg. @ ILoad = 5 mA. 

Load Reg. = 22 mV/A 
@ Temp = 6 K and 

ILoad = [0 A, 10 mA] 

[11] A. R. Cabrera-Galicia et al., " A Cryogenic Voltage Regulator with Integrated Voltage Reference in 22 nm FDSOI Technology," to be published in 2023 IEEE 19th  

Asia Pacific Conference on Circuits and Systems (APCCAS), 2023.
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CRYOGENIC IC DESIGN FOR VOLTAGE REGULATION
Voltage regulator cryogenic test; noise spectral density
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Ground loop noise is 
coupled to regulator 
output via cold plate.

17

Ground loop noise is 
removed by electrically 
detaching the regulator 

from the cold plate.

Higher temp. due to 
thermal pad and imperfect 
thermalization of cables; 

improvement on progress.



CRYOGENIC IC DESIGN FOR VOLTAGE REGULATION

Transient response and spectral noise density measured at cryo.

VRef. + VReg. cryogenic test 
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APPLICATION CASE: VOLTAGE REFERENCES FOR DAC

• Objective: 

to showcase the operation 

of multiple ICs on Cryo.

• DAC (65 nm CMOS) [12]

VReg. (22 nm FDSOI).

VReg. + DAC at cryogenic temperatures
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[15] Vliex, Patrick, et al. "Bias Voltage DAC Operating at Cryogenic Temperatures for Solid-State Qubit Applications." IEEE solid-state circuits letters 3 (2020): 

218-221.

Previously, the DAC voltage references were provided from RT electronics; 
8 connections.
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APPLICATION CASE: VOLTAGE REFERENCES FOR DAC
VReg. + DAC at cryogenic temperatures
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First trial: quick and dirty!
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APPLICATION CASE: VOLTAGE REFERENCES FOR DAC
VReg. + DAC at cryogenic temperatures
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VReg. set close to 
1 V via JTAG. 

DAC operates with 
the reference 

voltages generated 
on cryo. 

PCB temp. is 11 K;
optimization on 

cryocooler cabling is 
needed.  

Dedicated PCB for 
both ICs will improve 

the area and 
connections.  

Work on progress; 
first results.  
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CONCLUSIONS

• Cryogenic ICs need local power distribution network.

• Dilution refrigerators challenges: vibration induced noise, ground loops, limited connections.

• ICs and physical setups are the solution to the challenges.  
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BACKUP
VRef. with respect to VSup. at 6K
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BACKUP
Differential amplifier used by regulator
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BACKUP
VReg. with respect to VSup. at 6K
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BACKUP
VReg. PSRR at VSup.= 2V and Temp. = 6K
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