Probing mycobacterial metabolism in tuberculosis and leprosy to identify vulnerable metabolic nodes for drug development
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Background: Metabolism of pathogens in infectious diseases is important for their survival, virulence and pathogenesis. Mycobacterial pathogens successfully scavenge multiple host nutrient
sources in their intracellular niche. It is therefore important to identify the intracellular nutrient sources and their metabolic fates in these pathogens. We quantified in vivo fluxes of the pathogens
and probed host-bacterial metabolic cross talks in tuberculosis (TB) and leprosy using systems-based approaches of isotopic labelling, metabolic modelling and metabolic flux analysis.

Tuberculosis (TB): We developed '°N-flux spectral ratio analysis (*>N-FSRA) to measure nitrogen
metabolism of Mycobacterium tuberculosis (Mtb) in human macrophages [1].
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Results:

Table 1. Flux Spectral Ranges Determined with '°N FSRA

Lo

Flux Spectral Range

Nitrogen

Category Source  Minimum Ratio Maximum Ratio  Median
Asn 0.06 0.19 0.13
Pro 0.31 038 034
The 0.37 049 043
le 0.52 064 055
v 0.57 0863 0.60
Leu 0.58 0.96 0.61
Met 0.64 077 068
Phe 063 075 069
Lys 078 o8 081
Ala 0.98 1 1

o Glu 0 1.63 0.02

[} Ser 0 359 1.3
Gly 0.51 317 0.67
Asp 0.61 1246 2.1
Gin 1.50 185 247
Val 1.8 1345 288

spectral ranges in the interval [0,1), the biomass ()  spectral range is inconclusive
* nitrogen need has to be fulfilled by de novo
synthesis of the amino acid
» spectral range is essentially 1, nitrogen biomass
requirement is balanced with uptake

+ spectral ranges are larger
then 1, indicating that this
amino acid is a nitrogen donor

0 the amino acid is not taken up Asparagine (Asn); glutamine (Gln)
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Fig. Assimilation Pattern of Different Nitrogen Sources. Heatmaps are shown for amino acids derived from Mtb-infected
macrophages and intracellular Mtb. Assimilation patterns are shown for six tracers: 15N;-Asp, 1°N;-Glu, 5N,-GIn, *N,-Leu, °N;-Ala,
and 15N;-Gly. Values are mean + SEM from 3—4 independent infections and labelling experiments [1]. alanine (Ala); glycine (Gly);
valine (Val); leucine (Leu); isoleucine (lle); methionine (Met); serine (Ser); threonine (Thr); proline (Pro); phenylalanine (Phe);
aspartate/asparagine (Asp/n); glutamate/glutamine (Glu/n); lysine (Lys); arginine (Arg); tyrosine (Tyr)
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THP-1 macrophages. CFUs (colony forming
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(before infection), 1. 3,

and 7 days post-infection. Data are the
average of six independent infection
experiments, each with three technical
replicates

Conclusions:

4 Mtb utilizes multiple amino acids as
nitrogen sources in human
macrophages

Q  IN-FSRA tool identified the

intracellular nitrogen sources

available to Mtb in macrophages

Glutamine is the predominant

nitrogen donor for Mtb

Serine biosynthesis is essential for

the survival of intracellular Mtb

SerC is a drug target
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[1] Borah et al., 2019, Cell Reports, Volume 29,
Issue 11, 3580-3591.

Leprosy: We applied metabolomics and 13C isotopomer analysis to measure carbon metabolism
of the pathogen Mycobacterium leprae (Mlep), in its primary host cell, the Schwann cell and
compared it with its related mycobacterial TB pathogen growing in a macrophage [2].
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Differences between Mlep and Mtb intracellular glucose metabolism
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13C isotopomer profiles of amino acids in intracellular Mlep vs. Mtb. Amino acid profiles are plotted

on a metabolic map with M1, M2, M3, M4, M5, M6, M7, M8, and M9 mass isotopomer families.
Proportional increases or decreases in the '*C abundance of mass isotopomers of a metabolite are
indicated by a single gradient. Measurements are averages + SD from three independent infection
experiments.

Conclusions:

Q  Mtb imports most of its amino acids directly from the host
macrophage, BUT Mlep utilizes host glucose pools as the

a

carbon source to biosynthesize its amino acids.

The anaplerotic enzyme phosphoenolpyruvate carboxylase
is required for this intracellular diet of Mlep and is a potential
anti-leprosy drug target.



