001021158 001__ 1021158
001021158 005__ 20240226075337.0
001021158 020__ $$a978-3-95806-729-5
001021158 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-00604
001021158 037__ $$aFZJ-2024-00604
001021158 1001_ $$0P:(DE-Juel1)180190$$aChekol, Solomon$$b0$$eCorresponding author$$ufzj
001021158 245__ $$aUnveiling the relaxation dynamics of Ag/HfO2 based diffusive memristors for use in neuromorphic computing$$f - 2023-01-31
001021158 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2023
001021158 300__ $$ax, 185
001021158 3367_ $$2DataCite$$aOutput Types/Dissertation
001021158 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
001021158 3367_ $$2ORCID$$aDISSERTATION
001021158 3367_ $$2BibTeX$$aPHDTHESIS
001021158 3367_ $$02$$2EndNote$$aThesis
001021158 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1705401288_28112
001021158 3367_ $$2DRIVER$$adoctoralThesis
001021158 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Information / Information$$v101
001021158 502__ $$aDissertation, RWTH Aachen University, 2023$$bDissertation$$cRWTH Aachen University$$d2023
001021158 520__ $$aThe rapid growth in volume and complexity of data and transfer, driven by advancements in information technologies such as artificial intelligence (AI), cloud computing, big data, and machine learning, is placing significant demands on computation power and speed. Traditional computing architectures are facing challenges in meeting these demands due to the Von Neumann bottleneck, which limits the data transfer rate between the memory and the central processing unit and causes high energy consumption.Today, neuromorphic computing (NC) concepts that mimic the structure and function of the biological brain are gaining popularity as they promise energy-efficient and scalable computing solutions. Currently, neuronal functionality is often performedusing a transistor-based neuron, which is area- and energy-inefficient. Therefore, research in the "beyond von Neumann" area is aimed at novel volatile switching components with adjustable switching times, low power consumption, and high scalability, which could potentially be used as artificial neurons in NC circuits. These include threshold-switching devices that switch abruptly from the high-resistance state (HRS) to the low-resistance state (LRS) at a defined voltage. As soon as the applied voltage falls below a certain value, the cell relaxes back to the initial HRS state. In particular, diffusive memristors built from volatile electrochemical metallization (ECM) cells are attracting attention in emerging NC areas such as temporal encoding. These diffusive memristors consist of switching layers made from oxides or chalcogenides sandwiched between an electrochemically active electrode (e.g., Ag or Cu) and an inert electrode (e.g., Pt metal). The cells can be miniaturized down to the sub-micrometer range and the switching itself relies on the formation and dissolution of a metallic filament. Since the temporal behavior of diffusive memristors is their main characteristic, it is of crucial importance to understand the relaxation dynamics of these devices from a physical perspective. This is a prerequisite for optimizing and modulating the performance of diffusive memristors, especially for applications requiring precise control of switching times. Previous approaches mainly describe the relaxation time as a function of the given filament diameter while the filament growth process is not considered.
001021158 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001021158 536__ $$0G:(DE-82)BMBF-16ME0398K$$aBMBF 16ME0398K - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0398K)$$cBMBF-16ME0398K$$x1
001021158 8564_ $$uhttps://juser.fz-juelich.de/record/1021158/files/Information_101.pdf$$yOpenAccess
001021158 8564_ $$uhttps://juser.fz-juelich.de/record/1021158/files/Information_101.gif?subformat=icon$$xicon$$yOpenAccess
001021158 8564_ $$uhttps://juser.fz-juelich.de/record/1021158/files/Information_101.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001021158 8564_ $$uhttps://juser.fz-juelich.de/record/1021158/files/Information_101.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001021158 8564_ $$uhttps://juser.fz-juelich.de/record/1021158/files/Information_101.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001021158 909CO $$ooai:juser.fz-juelich.de:1021158$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001021158 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180190$$aForschungszentrum Jülich$$b0$$kFZJ
001021158 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001021158 9141_ $$y2023
001021158 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001021158 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001021158 920__ $$lyes
001021158 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
001021158 980__ $$aphd
001021158 980__ $$aVDB
001021158 980__ $$aUNRESTRICTED
001021158 980__ $$abook
001021158 980__ $$aI:(DE-Juel1)PGI-7-20110106
001021158 9801_ $$aFullTexts