001     1021164
005     20250129092443.0
024 7 _ |a 10.1007/s00723-023-01597-w
|2 doi
024 7 _ |a 0937-9347
|2 ISSN
024 7 _ |a 1613-7507
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-00610
|2 datacite_doi
024 7 _ |a WOS:001064997700002
|2 WOS
037 _ _ |a FZJ-2024-00610
082 _ _ |a 620
100 1 _ |a Fleischer, Simon
|0 P:(DE-Juel1)198893
|b 0
245 _ _ |a Approaching the Ultimate Limit in Measurement Precision with RASER NMR
260 _ _ |a Wien [u.a.]
|c 2023
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712661707_18042
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Radio-frequency Amplification by Stimulated Emission of Radiation (RASER) is a promising tool to study nonlinear phenomena or measure NMR parameters with unprecedented precision. Magnetic fields, J-couplings, and chemical shifts can be recorded over long periods of time without the need for radiofrequency excitation and signal averaging. One key feature of RASER NMR spectroscopy is the improvement in precision, which grows with the measurement time, unlike conventional NMR spectroscopy, where the precision increases with. However, when detecting NMR signals over minutes to hours, using available NMR magnets (ppb homogeneity), the achieved frequency resolution will eventually be limited by magnetic field fluctuations. Here, we demonstrate that full compensation is possible even for open low-field electromagnets, where magnetic field fluctuations are intrinsically present (in the ppm regime). A prerequisite for compensation is that the spectrum contains at least one isolated RASER line to be used as a reference, and the sample experiences exclusively common magnetic field fluctuations, that is, ones that are equal over the entire sample volume. We discuss the current limits of precision for RASER NMR measurements for two different cases: The single-compartment RASER involving J-coupled modes, and the two-compartment RASER involving chemically shifted species. In the first case, the limit of measurable difference approaches the Cramér-Rao lower bound (CRLB), achieving a measurement precision Hz. In the second case, the measured chemical shift separation is plagued by independently fluctuating distant dipolar fields (DDF). The measured independent field fluctuation between the two chambers is in the order of tens of mHz. In both cases, new limits of precision are achieved, which paves the way for sub-mHz detection of NMR parameters, rotational rates, and non-linear phenomena such as chaos and synchrony.
536 _ _ |a 622 - Detector Technologies and Systems (POF4-622)
|0 G:(DE-HGF)POF4-622
|c POF4-622
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Lehmkuhl, Sören
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lohmann, Lars
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Appelt, Stephan
|0 P:(DE-Juel1)133861
|b 3
|u fzj
773 _ _ |a 10.1007/s00723-023-01597-w
|g Vol. 54, no. 11-12, p. 1241 - 1270
|0 PERI:(DE-600)1480644-7
|n 11-12
|p 1241 - 1270
|t Applied magnetic resonance
|v 54
|y 2023
|x 0937-9347
856 4 _ |u https://juser.fz-juelich.de/record/1021164/files/s00723-023-01597-w.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1021164/files/s00723-023-01597-w.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1021164/files/s00723-023-01597-w.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1021164/files/s00723-023-01597-w.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1021164/files/s00723-023-01597-w.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1021164
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)133861
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-622
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Detector Technologies and Systems
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-21
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL MAGN RESON : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-21
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21