
Vol.:(0123456789)

Journal of Radioanalytical and Nuclear Chemistry (2024) 333:3577–3584 
https://doi.org/10.1007/s10967-023-09285-6

New directions in nuclear data research for accelerator‑based 
production of medical radionuclides

Syed M. Qaim1 

Received: 20 September 2023 / Accepted: 16 November 2023 / Published online: 8 January 2024 
© The Author(s) 2024

Abstract
Extensive nuclear data studies have been carried out over the last 30 years in the context of accelerator-based production of 
radionuclides, especially at energies below 30 MeV, and the achieved database is fairly good. Yet there are some deficiencies 
or new needs of data. Those needs are generally associated with new emerging clinical applications of radionuclides, e.g. 
theranostic approach, bimodal imaging, radioimmuno-therapy, etc. This article gives an overview of on-going nuclear data 
research utilizing charged-particle accelerators in four directions, namely low-energy region, intermediate energy range, use 
of the α-particle beam, and utilization of fast neutrons generated at accelerators. Wherever possible, a comparison of experi-
mental data with theoretical estimates is presented and evaluated (standardised) data, if available, are also briefly discussed.
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Introduction

Radioactivity finds application in medicine both for diag-
nosis and radiotherapy, provided suitable radionuclides are 
used [1]. The decay data of a radionuclide are of paramount 
importance in its choice for a specific application. The pro-
duction data, on the other hand, are of crucial importance 
in obtaining the radionuclide in high purity and in sufficient 
quantity. Diagnostic studies are generally performed using 
short-lived γ-ray emitters or positron emitters, utilizing 
Single Photon Emission Computed Tomography (SPECT) 
or Positron Emission Tomography (PET), respectively. In 
contrast, for internal radiotherapy, radionuclides emitting 
α- or β−-particles, conversion or/and Auger electrons are 
needed. In general, the nuclear data of radionuclides com-
monly used in patient care are well known [2, 3]. In some 
cases, however, minor discrepancies may exist.

In recent years, several new directions in radionuclide 
applications have been emerging; for example, theranostic 
approach, bimodal imaging, immuno PET, radionuclide 
targeted therapy, radioactive nanoparticles, etc. [4]. They 
all demand novel radionuclides with somewhat different 
chemistry than that of the radioisotopes routinely used in 
diagnosis and therapy. Presently the emphasis is on novel 
positron emitters (called non-standard positron emitters) for 
diagnosis, and highly ionizing low-range corpuscular radia-
tion emitters for therapy.

Radionuclides are produced using both nuclear reactors 
and cyclotrons. However, the trend to use a cyclotron/accel-
erator is increasing and, over the last 30 years, extensive 
experimental nuclear data studies have been carried out on 
accelerator-based production of radionuclides at energies 
of up to about 30 MeV [5]. Furthermore, standardisation 
of data has also been going on, mostly under the umbrella 
of IAEA. The available nuclear database is thus now fairly 
good [6]. Nevertheless, there are some needs for further 
nuclear data. This article gives an overview of on-going 
nuclear data research using charged-particle accelerators 
in four directions, namely, low-energy region, intermedi-
ate energy range, use of the α-particle beam, and utilization 
of fast neutrons generated at accelerators. Some relevant 
emerging needs are outlined.
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Low‑energy charged‑particle induced 
reaction cross sections

As stated above, the cross-section database of nuclear 
reactions induced by charged-particles of energies up to 
about 30 MeV is quite good, and theory is fairly successful 
in describing the low energy reactions. Yet, more detailed 
studies are needed near thresholds of some reactions, as 
outlined below.

A large number of low-energy medical cyclotrons 
(Ep ≤ 20 MeV; Ed ≤ 10 MeV) are in operation in many 
countries and about 1000 more such cyclotrons are being 
installed in various parts of the world. The major use of 
those machines is in the production of standard positron 
emitters for patient care via PET. However, some non-
standard positron emitters could also be produced using 
those cyclotrons. The main problem, however, is targetry. 
The medical cyclotrons have, in general, target systems 
available to irradiate only gases and liquids; thus irradia-
tion of a rather expensive, highly enriched solid mate-
rial, demands adaptation of the target facility. To this end 
three concepts exist: (a) development of a solid target at 
the medical cyclotron; (b) modification of a liquid target 
to irradiate a relatively large volume solution; (c) con-
struction of a small solid target for irradiation followed 
by its immediate dissolution (hybrid target). Due to some 
uncertainty in the positioning of the low-energy beam on 
the target and calculation of its energy degradation in the 
target, it is important to use high-precision nuclear reac-
tion cross sections to calculate the theoretical yield with 
some reliability. Some of the existing data, however, have 
low accuracy below 8 MeV. Most of the measurements are 
done via the stacked-foil technique with primary projectile 
energies of 20–30 MeV. The energy uncertainties in the 
last foils of the stack thus become rather large.

In view of above considerations, new measure-
ments were done on novel production routes of sev-
eral radionuclides near their thresholds. The results for 
the 100Mo(p,2n)99mTc and 124Te(p,n)124I reactions were 
reported quite some time ago [7, 8] and they served as 
the basis of development of production methodologies 
of those two radionuclides at a small-sized cyclotron. In 
recent years we analysed the production reaction cross sec-
tions of three non-standard positron emitters, namely 64Cu 
(T½ = 12.7 h), 86Y (T½ = 14.7 h) and 89Zr (T½ = 3.27 days), 
via the reactions 64Ni(p,n)64Cu, 86Sr(p,n)86Y and 
89Y(p,n)89Zr, respectively, the first two on highly enriched 
target materials [cf. [9–11]] but the latter on a natural 
target.

The data for the 64Ni(p,n)64Cu reaction were thoroughly 
evaluated by the IAEA in 2008 [6] and by Aslam et al. [12] 
in 2009. The agreement in the two curves in the maximum 

cross section range was good. However, in the low-energy 
region (shown in Fig. 1) a small discrepancy was observed. 
A later measurement [13] more or less confirmed the 
evaluated data by Aslam et al. [12] but some deviation 
remained. Furthermore, the global theoretical calculation 
[TENDL 2014] appeared rather far from the evaluated 
data. A new careful measurement [14] using a low-energy 
cyclotron at FZJ and a Tandem accelerator at Dhaka was 
therefore carried out (see Fig. 1). Based on the extended 
experimental results, a new evaluation was carried out by 
the IAEA in 2021 [6] and the updated curve is also given 
in Fig. 1. The discrepancy has now been removed. In the 
case of the 86Sr(p,n)86Y reaction, the database was discrep-
ant and weak. The IAEA evaluation proved to be rather 
erratic because one set of data was rejected and the only 
other set of doubtful data was adopted. Zaneb et al. [15], 
on the other hand, performed a critical evaluation and, on 
the basis of inconsistencies, recommended a new meas-
urement. This suggestion was followed and, through an 
international collaboration [16], very precise cross-section 
data for this reaction were obtained over the whole energy 
range. The third reaction, namely 89Y(p,n)89Zr, constitutes 
a typical case where database could be very strong due to 
the existence and use of a monoisotopic target. Thorough 
evaluations [6, 17] have established the authenticity of the 
available data.

The three typical low-energy reactions considered above 
should emphasize the point that new measurements may 
be necessary around the threshold of some reactions. They 
should be performed using projectiles of incident energies 
around 10 MeV or lower, if possible. Very appropriate for 

Fig. 1   Low energy region of the excitation function of the 
64Ni(p,n)64Cu reaction important for the production of 64Cu at a small 
cyclotron: experimental data and evaluations (adapted from Uddin 
et al. [14] and updated)



3579Journal of Radioanalytical and Nuclear Chemistry (2024) 333:3577–3584	

such measurements appear to be Tandem type accelerators 
which deliver higher quality low-energy beams than the 
cyclotrons.

Intermediate‑energy charged‑particle 
induced reaction cross sections

Protons of energies up to about 70 MeV are frequently uti-
lized for production of a few commonly used radionuclides, 
e.g. 123I (T½ = 13.2 h) via the 127I(p,5n)123Xe → 123I route, 
68Ga (T½ = 1.1 h) via the natGe(p,xn)68Ge(68Ga) generator 
system and 82Rb (T½ = 2.3 min) via the natRb(p,xn)82Sr(82Rb) 
generator system (for details cf. [3]). Interest is now grow-
ing in making use of the intermediate-energy protons in the 
production of many other radionuclides as well. The existing 
reaction cross-section database is, however, rather weak and 
nuclear model calculations are only partially successful in 
describing the data. The list of potentially interesting radio-
nuclides which could be produced by intermediate-energy 
protons is large. Here we consider only 5 typical radionu-
clides listed in Table 1, together with the respective promis-
ing production routes and relevant energy ranges. Two of 
them are useful for PET studies and three for internal radio-
therapy. We discuss them briefly below.

The radionuclide 72Se is the parent of 72As which is a 
positron emitter and builds a “matched theranostic pair” 
with the ß−-emitter 77As. For the production of 72Se the 
75As(p,4n)-reaction appears to be promising and several 
measurements have been reported [18–21], but the data-
base above 50 MeV is weak and discrepant. Nuclear model 

calculations were done by Amjed et al. [22] using the codes 
TALYS 1.9, EMPIRE 3.2 and ALICE-IPPE, and the results 
are shown in Fig. 2 together with the experimental data. 
Apparently the model calculations describe the data fairly 
well up to 45 MeV where the experimental database is good. 
Beyond that energy, the two sets of recent experimental data 
[20, 21] show large deviations; presumably the cross-sec-
tion values by DeGraffenreid et al. [20] are too high. The 
nuclear model calculations differ considerably both among 
themselves and with the experimental data, though the 
ALICE-IPPE values are near to DeGraffenreid et al. [20] 

Table 1   Typical examples of production of some medical radionuclides using intermediate-energy charged-particle induced reactions

*For production, fast-neutron induced and photonuclear reactions are also under intensive
investigation (see text)

Radionuclide T½ Decay mode (%) Production reaction Energy range of 
interest (MeV)

Status of production data Application

72Se 8.4 days EC (100) 75As(p,4n) 40–70 Weak Generator: par-
ent of 72As 
(T½ = 26.0 h) 
(PET)

134Ce 3.2 days EC (100) 139La(p,6n) 50–100 Fair In vivo generator: 
parent of 134La 
(T½ = 6.7 min) 
(PET)

67Cu* 2.6 days β− (100) 68Zn(p,2p) 30–80 Good β−-Therapy
70Zn(p,x) 30–80 Weak

149Tb 4.1 h α (16.7) 165Ho(p,spall) 1000 Fair α-Therapy
β+ (4.3) 152,154,155Gd(p,xn) 60–100 No data available
EC (79)

225Ac* 10.0 days α (100) 226Ra(p,2n) 10–30 Weak α-Therapy
232Th(p,x) 60–140 Fair

Fig. 2   Excitation function of the 75As(p,4n)72Se reaction: experimen-
tal data and nuclear model calculations (adapted from Amjed et  al. 
[22] and updated)
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and the EMPIRE 3.2 calculation appears to reproduce the 
data by Fox et al. [21] to a great extent. In general, however, 
improvements in both experiment and theory are called for.

The radionuclide134Ce is the parent of in vivo generator 
134Ce/134La which has the potential to serve as a PET sur-
rogate for both α-particle emitting 225Ac and 227Th radionu-
clides due to the unique Ce(III)/Ce(IV) redox couple [23]. 
Its production via the 139La(p,6n)-reaction has been demon-
strated [23]. The status of the cross-section database is fair 
[24] but further improvement is desired.

The radionuclide 67Cu is a β−-emitting therapeutic radio-
nuclide and builds a “matched theranostic pair” with the 
positron emitter 64Cu or 61Cu. A large number of reac-
tions have been investigated for production of 67Cu (for 
reviews cf. [25–29]), but the intermediate energy reaction 
68Zn(p,2p)67Cu appears to be the most promising. The data-
base is fairly strong and theory can partially describe the 
cross section. An evaluation of the data has also been done 
[6]. Very recently the reaction 70Zn(p,α)67Cu, which is very 
suitable for the production of 67Cu at a 30 MeV cyclotron 
[30, 31], was investigated also at energies above 45 MeV. 
The cross section increases suddenly [32] due to the onset of 
the 70Zn(p,2p2n)67Cu and some other competing processes. 
This could also become an interesting production route, but 
the database needs to be strengthened. It is worth mention-
ing here that GBq amounts of 67Cu are also being produced 
via the 68Zn(γ,p)67Cu process by a few companies in USA. 
Furthermore, the use of fast neutrons appears very promis-
ing. This aspect is discussed below separately.

The radionuclide 149Tb is an α-emitting rare-earth radio-
nuclide and has been produced to date in small quantity via 
a heavy-ion induced reaction combined with chemical sepa-
ration [33], and in larger quantity via spallation combined 
with on-line mass separation [34]. The intermediate energy 
reactions 152,154,155Gd(p,xn)149Tb have so far not been inves-
tigated but, from the yield point of view, they appear to be 
interesting.

The radionuclide 225Ac is an extremely important 
α-emitting radionuclide and it is presently in great demand 

for use in α-targeted therapy. Large efforts are being har-
nessed to produce it in sufficient quantities using 30 MeV 
protons via the reaction 226Ra(p,2n)225Ac [35] and fast 
neutrons via the process 226Ra(n,2n)225Ra �

−

→
 225Ac, or hard 

photons through the process 226Ra(γ,n)225Ra �
−

→
 225Ac. The 

databases of all processes are rather weak. The (γ,n) route is 
beyond the scope of this review. But the (n,2n) route is dis-
cussed below separately. A further method involves the use 
of the intermediate energy process 232Th(p,x)225Ac [36–39]. 
Its database is fair but more data on the formation of impuri-
ties would be beneficial.

In summary, it may be concluded that the needs for inter-
mediate energy reaction cross sections are extensive and 
they are increasing because of enhancing use of accelerators 
in production of both diagnostic and therapeutic radionu-
clides. Further experimental and theoretical work is needed 
to improve the databases.

Special use of the α‑particle beam in medical 
radionuclide production

Most of the accelerator-based radionuclides are produced 
utilizing a proton beam. This is due to generally high reac-
tion cross section and long range of the proton in the target 
material, leading to high product yield. Deuterons could 
also be useful but their availability is somewhat limited. As 
regards α-particles, the cross sections are also generally high 
but due to their short ranges in the matter, the yields are 
much lower. Nonetheless, for production of some radionu-
clides, the α-particle beam could be of special interest (for 
review cf. [40]).

In Table 2 we list 6 typical radionuclides which are 
preferentially produced using α-particles. The short-lived 
30P is useful for study of phosphorus metabolism via PET, 
in the form of 30P-labelled phosphate [41, 42] and also as 
30P-labelled phosphine gas [42]. The radionuclide 38K is 
used in cardiac studies via PET, 77Br finds application in pre-
paring bromoradiopharmaceuticals for metabolic studies via 

Table 2   Typical examples of production of some medical radionuclides using α-particle induced reactions*

* For detailed review cf. Qaim et al. [40]

Radionuclide T½ Decay mode (%) Production route Energy range of 
interest (MeV)

Status of pro-
duction data

Application

30P 2.5 min β+ (99.9) 27Al(α,n) 10–25 Fair PET
38K 7.6 min β+ (99.4) 35Cl(α,n) 7–25 Fair PET
77Br 57.0 h EC (99.3) β+ (0.7) 75As(α,2n) 15–30 Good SPECT
117mSn 13.6 days IT (100) Conversion electrons 116Cd(α,3n) 30–60 Fair Low-energy 

electron 
therapy

193mPt 4.3 days IT (100) Auger electrons 192Os(α,3n) 30–40 Fair Auger therapy
211At 7.3 h EC (58.1) α (41.9) 209Bi(α,2n) 20–28 Good α-Therapy
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SPECT, and 211At is in great demand for targeted α-therapy. 
In fact large scale production of 211At is only achieved via 
the (α,2n)-route. The radionuclides 117mSn and 193mPt are 
high-spin isomeric states and decay via internal transition 
whereby conversion electrons and showers of Auger elec-
trons, respectively, are emitted which could be used for ther-
apy. Both those radionuclides are routinely produced via the 
(n,n′γ) reaction using epithermal neutrons, but the specific 
activity achieved is rather low. For no-carrier-added pro-
duction of those two radionuclides, several charged-particle 
induced reactions can be utilized but the use of the α-particle 
beam is more advantageous. In both cases, clinical scale 
production leading to high specific activity products has 
been demonstrated (for a detailed review of the production 
methods of those 6 radionuclides, cf. [3]).

As far as the status of nuclear data of α-particle induced 
reactions is concerned, standardised cross section data are 
available only for the production of 211At which are also well 
reproduced by model calculations [6]. For other nuclides the 
database is not strong and theory is only partially successful 
[40, 43, 44]. Similarly for developing some other potentially 
useful radionuclides, further cross section measurements and 
nuclear model calculations are called for.

It may also be mentioned that in recent years the use of 
the α-particle beam in producing some special radionuclides 
in the rare-earth region has been finding enhanced attention 
(e.g. at RIKEN, Moscow, Kolkata, etc.) The product yields 
are low. However, some accelerator designers/producers in 
USA have started putting in lot of effort towards develop-
ment of machines which may deliver α-particle beams in the 
mA range. Those machines would lead to much higher yields 
of the desired products. Obviously this production method-
ology would demand more nuclear data work on α-particle 
induced reactions.

Use of accelerator‑generated neutrons 
in medical radionuclide production

Several types of accelerator-generated quasi-monoener-
getic as well as spectral neutrons could be made available 
for medical radionuclide production. A detailed discussion 
was given earlier [45]. The more important among them are 
mentioned here only briefly.

White neutron source at a LINAC

A high intensity electron linear accelerator (LINAC) often 
serves as an intense source of neutrons. The strong low-
energy component is suitable for inducing the (n,γ) reac-
tion and the very weak high-energy part of the spectrum 
could possibly induce the (n,2n) reaction. Thus 99Mo could 
be produced in a natMo target through 98Mo(n,γ)- and 

100Mo(n,2n)-reactions. The cross sections of the two pro-
cesses are fairly well known. The main drawback is the low 
specific activity of 99Mo produced. But new radiochemi-
cal methods and effective absorbing columns for generator 
production are being developed to cope with the problem.

Spallation neutron source at a high‑energy 
accelerator

The spectrum of such a neutron source extends from very 
low energies up to the maximum energy of the proton. 
The hard component is rather strong so that in the irradi-
ated material several neutron threshold reactions could be 
induced. However, not much attempt has been made to pro-
duce radionuclides at the few existing spallation neutron 
sources. Only at Los Alamos some preliminary studies on 
the 47Ti(n,p)47Sc reaction have been performed [46]. Produc-
tion of some therapeutic radionuclides in no-carrier-added 
form using a spallation neutron source appears to be quite 
feasible but extensive neutron data work and technological 
developments are necessary to achieve the goal.

d/Be breakup neutron source at a cyclotron

The neutron spectrum generated in the breakup of high-
energy deuterons on a Be-target has quite a different shape 
than the neutron spectrum encountered in a fission reactor, 
at a LINAC or in a spallation source. The neutron spec-
trum generated in 30 MeV deuterons on Be was quantita-
tively characterized in the 0° direction [47]. It is very for-
ward peaked and the shape of the spectrum varies with the 
energy of the incident deuteron [48, 49]. Besides a strong 
low-energy component the spectrum shows a peak at about 
half of the deuteron energy and then drops till the end of 
the maximum deuteron energy. This energy range is very 
suitable for (n,p) reactions. Thus several useful therapeutic 
radionuclides like 47Sc, 67Cu, 89Sr, etc. could be produced 
with high specific activity using breakup neutrons. The 
neutron-spectrum averaged cross sections for those radio-
nuclides are much higher than with fission neutrons [50, 
51]. Clinical scale production of 67Cu has been practically 
demonstrated using a 40 MeV d/C neutron source [52, 53].

The d/Be neutron field is also very suitable for inducing 
the (n,2n) reaction [cf. [54]]. A big disadvantage in that case, 
however, is the very low specific activity of the product. 
On the other hand, if the product of interest is the daugh-
ter of the radionuclide produced, then the process could 
be advantageously used. Thus three radionuclides, namely 
99mTc, 123I and 225Ac, could be produced through the routes 
100Mo(n,2n)99Mo �

−

→
 99mTc, 124Xe(n,2n)123Xe EC

→
 123I and 

226Ra(n,2n)225Ra �
−

→
 225Ac, respectively. This methodology 

could compete with the LINAC-based (γ,n) process pres-
ently discussed for both 99Mo and 225Ac (see above).
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As far as the nuclear data for the production of radionu-
clides with d/Be breakup neutrons are concerned, neutron-
spectrum averaged cross sections have been reported for a 
large number of reactions on many target elements using 
30 MeV and 50 MeV deuterons on Be [54–56]. However, 
more data will be needed. Partly evaluated excitation func-
tions of several (n,p) and (n,2n) reactions are also available 
(cf. ENDF-B-VIII), but the energy range covered is gener-
ally limited up to 20 MeV. Thus for obtaining full scale 
spectrum-averaged cross sections, some reliance will have 
to be placed on nuclear model calculations.

Concluding remarks

Accurate knowledge of nuclear data is absolutely neces-
sary for production and application of radionuclides in 
medicine. Whereas well standardised data are available for 
the production of radionuclides commonly used in patient 
care, constant nuclear data research is essential to meet 
changing trends in radionuclide applications in medicine, 
especially using metallic radionuclides. A large number 
of small medical cyclotrons are being installed in various 
parts of the world, mainly for routine production of stand-
ard positron emitters. But they are also finding increas-
ing use in production of non-standard positron emitters 
through development of versatile irradiation targets. The 
latter demands high-accuracy data near reaction thresh-
olds. The present interest in medical application of radio-
nuclides is directed towards targeted radionuclide therapy, 
preferably applying the theranostic approach. This is lead-
ing to an enhanced use of intermediate energy accelerators 
in production of β− and α-particle emitting therapeutic 
radionuclides. The available cross-section database in 
this energy range being rather weak, detailed experimen-
tal work and further development of theory are called for. 
Most of the radionuclides are produced using protons, but 
in some cases use of the α-particle beam is very advanta-
geous, e.g. in the production of 211At for α-targeted ther-
apy, or the high-spin isomeric states 117mSn and 193mPt 
for Auger therapy. More cross section work is needed to 
develop production of some other potentially useful radio-
nuclides. Furthermore, the deuteron beam from a cyclotron 
falling on a Be target provides fast neutrons that can be 
advantageously used for the production of a few therapeu-
tic radionuclides via the (n,p) and (n,2n) reactions. For this 
purpose, however, more detailed information on the excita-
tion functions of the producing reactions above 20 MeV is 
needed. In short, with enhancing interest in accelerator-
based production of medical radionuclides for emerging 
novel applications, the need of nuclear data research in 
new directions will continue.
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