001021177 001__ 1021177
001021177 005__ 20250129092443.0
001021177 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-00621
001021177 037__ $$aFZJ-2024-00621
001021177 088__ $$2Other$$a4444
001021177 1001_ $$0P:(DE-Juel1)173094$$aFleitmann, Sarah$$b0$$eCorresponding author$$ufzj
001021177 245__ $$aCharacterization of Distortions in Charge Stability Diagrams and Their Simulation in Modeled Data$$f - 2022-08-31
001021177 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2024
001021177 300__ $$a84
001021177 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
001021177 3367_ $$2DataCite$$aOutput Types/Supervised Student Publication
001021177 3367_ $$02$$2EndNote$$aThesis
001021177 3367_ $$2BibTeX$$aMASTERSTHESIS
001021177 3367_ $$2DRIVER$$amasterThesis
001021177 3367_ $$0PUB:(DE-HGF)19$$2PUB:(DE-HGF)$$aMaster Thesis$$bmaster$$mmaster$$s1719217754_32506
001021177 3367_ $$2ORCID$$aSUPERVISED_STUDENT_PUBLICATION
001021177 4900_ $$aBerichte des Forschungszentrums Jülich$$v4444
001021177 502__ $$aMasterarbeit, FH Aachen, 2022$$bMasterarbeit$$cFH Aachen$$d2022
001021177 520__ $$aCharge stability diagrams provide information about the electron occupation of double quantum dots. They are used during the tuning process of double quantum dots, necessary to enable their operation as quantum bits. Simulated charge stability diagrams are required for testing and developing automated tuning algorithms. They are well suited for that because they can be generated fast and the ground truth occupation is known for a simulated data point. In contrast, the measuring of experimental datasets takes a long time and the ground truth is unknown. This thesis deals with the simulation of distortions in simulated charge stability diagrams. For the simulation of the undisturbed occupation data, the capacitive model [1] and the Hubbard model [2] are presented. However, both models are not suited for the simulation of the honeycomb structures visible in available experimental charge stability diagrams. Another approach, currently developed by Fabian Hader from the ZEA-2, is used to overcome this problem.To simulate realistic charge stability diagrams, the sensor response including distortions has to be added to the clean occupation data. Five types of distortions are identified: cross-coupling between sensor and double dot plunger gates, white noise, pink noise,random telegraph noise, and dot jumps. For a realistic simulation of these, procedures to determine parameter ranges from the experimental charge stability diagrams are developed and applied. Then, the generated simulated dataset is evaluated visually and by different metrics. To improve the quality of the simulated dataset, the initial parameters are adjusted, and the simulation model itself is refined. Finally, the optimized simulated dataset is evaluated with the same metrics, and the results are discussed.
001021177 536__ $$0G:(DE-HGF)POF4-5223$$a5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001021177 8564_ $$uhttps://juser.fz-juelich.de/record/1021177/files/J%C3%BCl_4444_Fleitmann.pdf$$yOpenAccess
001021177 8564_ $$uhttps://juser.fz-juelich.de/record/1021177/files/J%C3%BCl_4444_Fleitmann.gif?subformat=icon$$xicon$$yOpenAccess
001021177 8564_ $$uhttps://juser.fz-juelich.de/record/1021177/files/J%C3%BCl_4444_Fleitmann.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001021177 8564_ $$uhttps://juser.fz-juelich.de/record/1021177/files/J%C3%BCl_4444_Fleitmann.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001021177 8564_ $$uhttps://juser.fz-juelich.de/record/1021177/files/J%C3%BCl_4444_Fleitmann.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001021177 909CO $$ooai:juser.fz-juelich.de:1021177$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001021177 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173094$$aForschungszentrum Jülich$$b0$$kFZJ
001021177 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5223$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001021177 9141_ $$y2023
001021177 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001021177 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001021177 920__ $$lyes
001021177 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
001021177 9801_ $$aFullTexts
001021177 980__ $$amaster
001021177 980__ $$aVDB
001021177 980__ $$abook
001021177 980__ $$aI:(DE-Juel1)ZEA-2-20090406
001021177 980__ $$aUNRESTRICTED
001021177 981__ $$aI:(DE-Juel1)PGI-4-20110106