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Abstract

Charge stability diagrams provide information about the electron occupation of double
quantum dots. They are used during the tuning process of double quantum dots, neces-
sary to enable their operation as quantum bits.
Simulated charge stability diagrams are required for testing and developing automated
tuning algorithms. They are well suited for that because they can be generated fast and
the ground truth occupation is known for a simulated data point. In contrast, the mea-
suring of experimental datasets takes a long time and the ground truth is unknown. This
thesis deals with the simulation of distortions in simulated charge stability diagrams.
For the simulation of the undisturbed occupation data, the capacitive model [1] and the
Hubbard model [2] are presented. However, both models are not suited for the simulation
of the honeycomb structures visible in available experimental charge stability diagrams.
Another approach, currently developed by Fabian Hader from the ZEA-2, is used to over-
come this problem.
To simulate realistic charge stability diagrams, the sensor response including distortions
has to be added to the clean occupation data. Five types of distortions are identified:
cross-coupling between sensor and double dot plunger gates, white noise, pink noise,
random telegraph noise, and dot jumps. For a realistic simulation of these, procedures
to determine parameter ranges from the experimental charge stability diagrams are de-
veloped and applied. Then, the generated simulated dataset is evaluated visually and by
different metrics. To improve the quality of the simulated dataset, the initial parameters
are adjusted, and the simulation model itself is refined. Finally, the optimized simulated
dataset is evaluated with the same metrics, and the results are discussed.





Kurzfassung

Ladungsstabilitätsdiagramme liefern Informationen über die Elektronenbesetzung von
Doppelquantenpunkten. Sie werden während des Kalibrierungsprozesses von Doppelquan-
tenpunkten verwendet, der notwendig ist, um sie als Quantenbits zu nutzen.
Simulierte Ladungsstabilitätsdiagramme werden zum Testen und Entwickeln automa-
tisierter Kalibrierungsalgorithmen benötigt. Sie sind gut dafür geeignet, da sie schnell
erzeugt werden können und die Elektronenbesetzung für einen simulierten Datensatz
bekannt ist. Im Gegensatz dazu dauert die Messung von experimentellen Datensätzen
lange und die Elektronenbesetzung ist unbekannt. Diese Arbeit beschäftigt sich mit der
Simulation von Störungen in simulierten Ladungsstabilitätsdiagrammen.
Für die Simulation der unverfälschten Besetzungsdaten werden das kapazitive Modell
[1] und das Hubbard-Modell [2] vorgestellt. Beide Modelle eignen sich jedoch nicht für
die Simulation der wabenförmigen Strukturen, die in den verfügbaren experimentellen
Ladungsstabilitätsdiagrammen sichtbar sind. Um dieses Problem zu überwinden, wird
ein anderer Ansatz verwendet, der derzeit von Fabian Hader vom ZEA-2 entwickelt wird.
Für die Simulation von realistische Ladungsstabilitätsdiagramme muss die Sensorantwort
einschließlich Störungen zu den sauberen Besetzungsdaten hinzugefügt werden. Es wer-
den fünf Arten von Störungen unterschieden: Kreuzkupplung zwischen dem Sensor und
den Plunger Gates des Doppelquantenpunktes, weißes Rauschen, pinkes Rauschen, zufäl-
liges Telegrafenrauschen und Dot Jumps. Um diese realistisch zu simulieren, werden Ver-
fahren zur Bestimmung von Parameterbereichen aus den experimentellen Ladungsstabil-
itätsdiagrammen entwickelt und angewandt. Schließlich wird der generierte simulierte
Datensatz visuell und anhand verschiedener Metriken bewertet. Um die Qualität des
simulierten Datensatzes weiter zu verbessern, werden dann die Anfangsparameter angepasst
und das Simulationsmodell verfeinert. Schließlich wird der optimierte simulierte Daten-
satz mit denselben Metriken bewertet und die Ergebnisse werden diskutiert.
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1 Introduction

This chapter provides insight into the topic of this thesis. First, the institute where the
work has been carried out is presented. Then, a general description of quantum computing
follows, and finally, the motivation for this work is given.

1.1 Central Institute of Engineering, Electronics, and
Analytics

In cooperation with other institutes of the Forschungszentrum Jülich GmbH as well as
universities and other scientific institutions all over the world, the Central Institute of
Engineering, Electronics, and Analytics (ZEA) develops and implements devices, ex-
periments, processes, analytical procedures, measuring, and control equipment, detector
systems, computer-assisted tools, and imaging techniques required for research that are
not available on the market [3].
The institute is divided into three subinstitutes: Engineering and Technology (ZEA-1),
Electronic Systems (ZEA-2), and Analytics (ZEA-3). This work is carried out in the
ZEA-2.
During the development of complex system solutions in the ZEA-2, highly integrated
System-on-Chip (SoC) solutions as well as fast data acquisition and processing play a big
role [4]. The applications areas for these technologies comprise detector systems, mea-
surement systems as well as nano- and microelectronic systems.
In the research field of quantum computing, the ZEA-2 develops scalable control and
read-out electronics to enable the scalability of quantum computers. In this context, an-
other main goal is the automated tuning of semiconductor double quantum dots (DQDs)
for the realization of quantum bits (qubits). In this field, the ZEA-2 works in close coop-
eration with the JARA1 Institute for Quantum Information, which is a shared initiative of

1Jülich Aachen Research Alliance
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1 Introduction

the RWTH2 Aachen and the Forschungszentrum Jülich GmbH [5].
To understand the importance of this research field a short introduction to quantum com-
puting is given in the following section.

1.2 Quantum Computing

Quantum computing describes the idea of using quantum effects to solve dedicated prob-
lems faster than on any classical computer. The history of quantum computing started in
1981 with the idea of Richard Feynman to draft a computer that enables the simulation
of physics, especially quantum physics [6]. He stated that it is impossible to simulate
quantum physics efficiently on a classical computer, thus motivating the need for quan-
tum computers.
The first algorithm for quantum computers enables prime factorization in a polynomial
runtime and was invented by Peter Shor in 1994 [7]. This algorithm endangers the safety
of modern encryption methods like RSA3 [8] if it can be executed on large quantum com-
puters.
In 1997, the first algorithm was experimentally executed on a quantum computer in col-
laboration with IBM [9]. Many years later in 2019, a team lead by Google published a
paper stating that its Sycamore processor is the first quantum computer achieving quan-
tum supremacy. It was able to execute a task in 200 seconds which would take about
10,000 years for a classical super computer [10].
Today, there are many different possible application areas for which quantum computers
are expected to be beneficial. These include optimization problems such as in artificial
intelligence and machine learning, weather forecasting, traffic and supply chain optimiza-
tion, as well as research use cases for material science or drug development [11]. More-
over, quantum computers will have an impact on cryptography as the widely used RSA-
algorithm has to be replaced by other encryption methods, which do not rely on prime
factorization. One possibility would be to use quantum cryptography methods instead.

1.3 Motivation

The smallest logical unit of a quantum computer is a qubit. The functionality of qubits
is further described in Section 2.1. To enable the operation of semiconductor DQDs as

2Rheinisch Westfälisch Technische Hochschule
3invented by Rivest, Shamir, and Adleman
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1.3 Motivation

qubits, they have to be calibrated by a complex tuning process. Therefore, in a fundamen-
tal step, charge stability diagrams (CSDs) are recorded and analyzed. This work aims to
contribute to the generation of simulated realistic CSDs, especially concerning the distor-
tions present in experimental CSDs.
Simulating CSDs is an important task. In addition to the fact that the ZEA-2 cannot ex-
perimentally measure CSDs on its own, developing algorithms aiming at an automated
set up of qubits (see Section 2.2) requires a large number of labeled datasets. Without
a simulation, the acquisition and labeling are very time-consuming. The labeling of the
datasets is also unreliable because even for a human expert it is not always visible where
a transition line is proceeding and the ground truth is not known. Moreover, available
data often does not reflect the real circumstances because only usable measurements are
published. For creating an automated tuning algorithm also unusable datasets have to be
detected to initiate appropriate measures for bringing the DQD back into a usable state.

The theoretical fundamentals for this thesis are laid out in Chapter 2. This includes a
description of qubits in general (Section 2.1) and their implementation as DQDs (Sec-
tion 2.2). For the simulation of undisturbed CSDs, a geometrical model derived from
observations of physical basis models is used. These basis models are described in Sec-
tion 2.4. Moreover, the identified noise types and artifacts which can appear in a CSD are
explained in Section 2.5.
The methods used to determine the parameters for the simulation of CSDs are described
in Chapter 3. This is a technically challenging task because individual noise types have
to be extracted from experimental data with many different interfering distortions.
Finally, the simulated data are compared with actual measurements visually and by met-
rics to assess the quality of the simulated noise (Chapter 4). As CSDs are high dimen-
sional datasets, the comparison of the distribution of simulated and actual measurements
is not directly possible. Instead, the datasets have to be transformed into lower dimen-
sional spaces or only specific features of the datasets can be compared. After the com-
parison of the first simulated dataset with experimental data, the parameters for the simu-
lation are optimized and the final simulated dataset is evaluated with the same evaluation
methods as before.
In addition to the evaluation, a discussion of the meaning of the evaluation results for
the aim of this thesis follows (Chapter 5). In the end, a conclusion and an outlook are
given.

3





2 Theoretical Fundamentals

This chapter provides the theoretical foundation for this thesis. This includes an explana-
tion of the functionality of qubits and their implementation in DQDs, recent related work,
different physical basis models for the simulation of undisturbed CSDs, and a description
of the different distortions which often occur in a CSD.

2.1 Quantum Bits

The quantum equivalent to a bit is called a qubit. Contrary to a classical bit, a qubit stores
a superposition of the two basis states “0” and “1”. If the state of a qubit is measured, the
superposition gets lost, and one of the basis states is measured with a certain probability.
The state of a qubit can be represented in the ket notation ∣⋅⟩. This notation denotes that
the states are orthogonal vectors. The state of a qubit can be given by

∣ψ⟩ = α ∣0⟩+β ∣1⟩

with α,β ∈C and ∣α ∣2+ ∣β ∣2 = 1. In this case ∣α ∣2 and ∣β ∣2 give the probability of measuring
“0” or “1”, respectively [12, chpt. 2.1].
Due to superposition, it is possible to represent 2n states simultaneously with n qubits
[13], whereas a classical computer would only be able to represent one of these states at
a time.
Another quantum physical principle used in a quantum computer is the entanglement
of qubits. If two qubits are entangled, their states can only be described for the whole
system and not independently for each qubit. This means that when measuring one qubit,
the result will always be correlated with the outcome of the measurement of the other
qubit.
Taking superposition and entanglement together, a quantum computer can represent all
combinations of zeros and ones in one step, while a classical computer would have to
cycle through every bit combination step by step. However, when reading out the qubits,

5



2 Theoretical Fundamentals

the superposition is lost, meaning that one of the possibilities is chosen. Thus, for creating
fast algorithms the problem cannot be treated as a black box, instead one has to enlarge
the probability for the correct solution by exploiting destruction inference to minimize the
probability of wrong possibilities [14].
There are many different possibilities to implement a qubit. One of them is the use of
DQDs in a semiconductor heterostructure where the information of the qubit is encoded
in the spin states of the electrons. The spin is a quantum mechanical property that can
be imagined as a spin around its axis having an “up” or “down” state. An electron can
also be in a superposition of these two states, which makes it feasible to use for the
implementation of a qubit.

2.2 Tuning of Double Quantum Dots

In the setup used by the Quantum Technology Group of the RWTH, the quantum dots
reside in a two-dimensional electron gas (2DEG) that is formed by a GaAs/AlGaAs1

heterostructure. The gate layout used for their operation is shown in Figure 2.1. The
voltages applied to the gate electrodes deplete the area underneath the gates. Thereby, the
barrier gates, named with B, are intended to control the tunnel barriers between adjacent
quantum dots as well as between quantum dots and the electron reservoir. Moreover,
the plunger gates, named with P, are designed to affect the electrochemical potential of
the related quantum dots. The tunnel barriers influence the probability for an electron to
jump from one location in the heterostructure to another. The electrochemical potential
determines the number of electrons that fit into the quantum dot.

Figure 2.1: Gate layout for two DQDs. The green dots mark areas where sensing dots
(SDs) are formed, and the red dots mark the areas for quantum dots.

1gallium-arsenide/aluminium-gallium-arsenide
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2.2 Tuning of Double Quantum Dots

The experimental setup is shown in Figure 2.2. It is similar to those described by Botzem
[12] and Cerfontaine [15]. The DQD has to be cooled down in a dilution refrigerator
because the qubit is stable only at a temperature of a few milli-Kelvin. Otherwise thermal
noise would lead to a short decoherence time because the electrons would move too much
to catch them in the quantum dots. To thermalize the signal again, different cooling stages
are used. Furthermore, the setup is split into direct current (DC) control and readout as
well as radio frequency (RF) reflectometry control and readout. The simpler DC measure-
ments are used for steps in the tuning of the quantum dots which make a slower control in
the timescale of milliseconds to seconds acceptable. Moreover, they are used for the first
tuning steps which are only possible with DC measurements. RF measurements, on the
other hand, are used to operate the qubit in timescales of nanoseconds but also for other
steps of the tuning procedure.
The voltages for the DC measurements are generated by a digital-to-analogue converter
(DecaDAC). There are several low-pass filters installed in the breakout box, the RC-filter
box, and the sample printed circuit board (PCB), which should reduce the noise coming
from the control electronics and the environment. The gate structure shown in Figure 2.1
is placed on the sample PCB.
Two carrier signals are generated by the RF source for the readout of the SDs. Less fil-
ters are used for the RF readout than for the DC readout, resulting in more noise in the
measured signal.

DecaDAC
home-built

Breakout Box
RC-LP (1 kHz or 17 kHz)

π-filter (1.5 nF)

with or without filtering
1:6 voltage divider

DC Lines (Constantan Looms)
RC-filter box

(1kΩ, 10 nF)

Data Acquisition
Alazar ATS9440, PCIe

Cyrogenic 
Amplifier

(QuinStar QCA-U-230-30HZ1
53 dB, 2.1K noise temp.)

Sapphire Stripline
(signal thermalization to

room temperature)

Cryogenic
Circulator

DC voltages

96 x BNC coax

290 K

12 x twisted pair

DC control / readout

Flex PCB

Cu coax

MLFI
Lock-in Amplifier

AWG
(Tabor WX2184C)

RF readout

RF control

SMA coax

SMA
feedthrough

Semi-rigid coaxial cable asssemblies

Attenuators (-20 dB, -6 dB, -6 dB, -3 dB)

NbTi coaxes 

217.0 and 236.6 MHz excitation
signal for two qubits

RF Source
(Rigol DSG815)

Switch LPHP

Mixer

Amplifier
Miteq AU-1565

LP

LP

HP

RF Readout Circuit

Sample
PCB

SMPM edge launchers

40 pin connector

Filtering (10nF)

Si interposer
and Sample

Bias Tee (R=1 kΩ, C=10 nF)

Tank Circuit (L=470nH and 560 nH) Coplanar
Waveguides

RF gates

DC gates

Ohmic contact
near sensing dot

55 K 3.5 K 0.7 K 100 mK 10 mK

Cu coax

Figure 2.2: Experimental setup with different cooling stages, adapted from [16]

For operating DQDs as qubits, a tuning process [17] has to be executed. It is divided into
a coarse- and a fine-tuning part. As a first step of the coarse-tuning, the SD is set to a
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2 Theoretical Fundamentals

state that it is optimally sensitive to the charges in the DQD. After that, the gate voltages
for the DQDs are adjusted to build two charge islands for every DQD. To overcome the
problem of capacitive coupling between different gate electrodes, virtual gates can be
configured next or later. Each virtual gate should affect only one parameter of the system
by using a linear combination of multiple physical gates compensating for the capacitive
coupling. The final step of the coarse-tuning tunes the occupation of the charge islands. In
the fine-tuning stage, among other things, the inter-dot tunnel coupling and the coupling
to the leads are adjusted. Furthermore, some specific configuration points are defined that
are used to operate, readout, and reset the qubit. This is required to be able to execute
high-fidelity quantum gates2 on the qubit [18].
CSDs help to determine the electron occupation inside the quantum dots. In the described
setup, they are derived by measuring the conductance through a nearby SD in dependency
on the voltages applied to the two plunger gates of the DQD. While the gate on the
horizontal axis of a CSD is swept continuously and the sensor response averaged over
a pixel distance is saved as the pixel value, the vertical axis gate is changed stepwise
after the measuring of a line has finished. The typical structure of a CSD looks like a
honeycomb pattern. The left side of Figure 2.3 shows this pattern where (Nl,Nr) indicates
the number of electrons in the left respective right quantum dot. On the right side, a
measured CSD is visible. The lines in the schematic CSD as well as the edges in the
measured one indicate a transition of an electron between the reservoir and the DQD or
between the dots, also called lead and inter-dot transition, respectively. However, in the
measured CSDs, the transition lines are often diffuse, disturbed by noise and artifacts, or
sometimes not even visible.

(a) (b)

Figure 2.3: Example of a CSD. (a) Schematic CSD (adapted from [19, Ch. 8]) and (b)
one experimentally measured part of it. The black lines in (a) indicate lead
transitions, and the red lines indicate inter-dot transitions of an electron. The
orange circles in (b) indicate the triple points.

2quantum gates are the basic quantum circuit operations used for any computation
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With the help of a CSD, other properties of the DQD can also be determined. These
are the inter-dot tunnel coupling as well as the tunnel coupling to the reservoir. These
properties define how easily an electron can transition between the dots and between the
reservoir and a dot. In the CSD, a high inter-dot tunnel coupling leads to curved triple
points (marked by orange circles in Figure 2.3b) and blurred inter-dot transitions.
All experimental CSDs used in this thesis are kindly provided by the Quantum Technol-
ogy Group of the RWTH.

2.3 Related Work

There are many recent approaches to the automated tuning of DQDs. In coarse-tuning,
machine learning techniques play a dominant role in determining the charge state of the
quantum dots. Many authors use convolutional neural networks (CNNs), which are arti-
ficial neural networks designed for image classification and pattern recognition [20, 21,
22, 23, 24], but also feed-forward neural networks (FFNNs) [25] and various binary clas-
sifiers [26] are applied.
In addition to the supervised machine learning techniques, classical signal processing is
used. In [27], the authors remove the background of the CSDs and use a modified Hough
transform [28] or EDLines [29] to detect curved lines.
Some of the mentioned methods already include simulated data in their training procedure
[20, 21, 23, 24, 25]. However, they often do not include the simulation of distortions in
the CSDs or only simulate preprocessed CSDs. Daruvola et al. [20] compared the results
for synthetic and experimental training data, showing an advantage for experimental or a
combination of synthetic and experimental data. As a reason for this, the authors stated
that the noise in the experimental data was not understood well enough to accurately sim-
ulate it for synthetic training data.
According to Ziegler et al. [24], the performance of the CNN could be improved by in-
cluding simulated data in the training procedure. Their simulated CSDs are an extension
of the Qflow lite dataset [30], which does not include any distortions. However, they
only provide their simulated datasets and not a framework for simulating CSDs, which
would be beneficial, especially for examining the effect of different noise strengths on
the tuning procedure. For the creation of simulated distorted CSDs, first, the undistorted
occupation data for the CSD have to be created. Both Ziegler and Darulova used the
QFlow lite dataset for this but Darulova also used a capacitive model. To create data with
similar honeycomb patterns as visible in the experimental data, a model with adaptable
parameters, like the capacitive model, should be used.

9



2 Theoretical Fundamentals

2.4 Physical Models for Charge Stability Diagrams

This section describes two different physical models used for the simulation of charge
stability diagrams. The capacitive model (Section 2.4.1) does not include any quantum
effects, whereas the Hubbard model (Section 2.4.2) includes tunnel coupling effects be-
tween the dots. At the end of the section, the models are compared.

2.4.1 Capacitive Model

In the capacitive model described by van der Wiel et al. [1], quantum effects are neglected.
Each of the two dots in a double dot system is capacitively coupled to

• a plunger gate with voltage Vpi and capacitance Cpi ,

• the leads, that is the source and drain with voltage Vli and capacitance Cli ,

• the other dot with capacitance Cm, and

• to the plunger gate of the other quantum dot with capacitance Ci j, which was ne-
glected in [1] but added in [31].

These parameters are also schematically visualized in Figure 2.4.

QD2
𝐶𝑚

𝐶𝑙1 𝐶𝑙2

𝐶𝑝1 𝐶𝑝2

𝑉𝑙1 𝑉𝑙2

𝑉𝑝1 𝑉𝑝2

𝐶12 𝐶21

SD1 SD2QD1

Figure 2.4: Schematic visualization of the different capacitances and voltages incorpo-
rated in the model. Figure adapted from [31].

The charge Q j at each conductor, i.e., gate or dot, in the system can be derived from the
sum of the charges on all capacitors connected to this conductor

Q j =
N
∑
k=0

qi j =
N
∑
k=0

C jk(Vj −Vk), (2.1)
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2.4 Physical Models for Charge Stability Diagrams

where Vj is the electrostatic potential of conductor j and the summation runs over every
dot and gate the conductor j is coupled to. This can also be written in a more compact
form with the help of the capacitance matrix C:

Q⃗ =CV⃗ . (2.2)

The diagonal elements of C consist of the total capacitances of the respective dot or gate,
while the off-diagonal element Ci j is the negative capacitance of conductor i and conduc-
tor j. This system of equations can be divided into subsystems

Q⃗ =
⎛
⎝

Q⃗c

Q⃗v

⎞
⎠
=
⎛
⎝

Ccc Ccv

Cvc Cvv

⎞
⎠
⎛
⎝

V⃗c

V⃗v

⎞
⎠
=CV⃗ , (2.3)

where Q⃗c and V⃗c are the charges and voltages on the dots and Q⃗v and V⃗v are the charges
and voltages on the voltage sources. Q⃗c is given by −∣e∣(N⃗ − N⃗0) with N⃗0 denoting the
electron numbers in the dots when no voltage is applied, ∣e∣ denoting the charge of one
electron, and N⃗ denoting the current number of electrons in the dots. As the voltages
on the voltage sources are known, the capacitance matrix has to be inverted only for the
voltages at the dots, leading to

V⃗c =C−1
cc (Q⃗c−CcvV⃗v). (2.4)

The total electrostatic energy of the system is defined by

E(N1,N2) =
1
2

V⃗TQ⃗ = 1
2

V⃗TCV⃗ . (2.5)

When calculating the electrostatic energy of the dots, Equation (2.4) can be plugged into
Equation (2.5) leading to

Edot(N1,N2) =
1
2
(Q⃗c−CcvV⃗v)TC−1

cc
T(Q⃗c−CcvV⃗v). (2.6)

From this, the electrochemical potential of the dots, defined as the energy to add the last
electron to the dot, can be derived by

µdot1(N1,N2) = Edot(N1,N2)−Edot(N1−1,N2)

µdot2(N1,N2) = Edot(N1,N2)−Edot(N1,N2−1)
(2.7)

Finally, the CSD is defined by using the electrochemical potentials to determine the equi-
librium electron numbers N1 and N2 as a function of the gate voltages Vp1 and Vp2 . These
are the highest values of N1 and N2 for which both µ1(N1,N2) and µ2(N1,N2) are less
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2 Theoretical Fundamentals

than or equal to zero. This leads to a system of inequalities in the form

AN⃗ − B⃗ ≤ 0, (2.8)

as the quadratic terms of Q⃗c and thus N⃗ in Equation (2.6) cancel out because of the dif-
ference between the two electrostatic energies in Equation (2.7) for the electrochemical
potential.
For simulations with this model, the implementation from the bachelor thesis of Hangleiter
[31] is used. First, Hangleiter solves the system of inequalities in Equation (2.8) for equal-
ity and then determines the correct physical states. The variables A and B⃗ are calculated
for every gate voltage applied by exploiting

µ⃗(N⃗ = 0⃗) = B⃗ and µ⃗(Ni = 1,N j = 0, j ≠ i)+ B⃗ =A⋅i, (2.9)

where A⋅i is the i-th column of A. Then, the linear system can be solved with the help of
the least squares method. Afterwards, the correct physical configuration is found with the
help of the algorithm presented in Figure 2.5.

Figure 2.5: Flowchart of the algorithm used to determine the correct physical number of
electrons [31]

The required parameters for the simulation of a CSD using the described capacitive model
are listed in the following. For every parameter, the effect is shown in example images
(see Figures 2.7 to 2.11). The default image which can be used for the comparison is
shown in Figure 2.6.

• number_dots is the number of dots in the system. For a DQD, this equals two.
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2.4 Physical Models for Charge Stability Diagrams

• electron_number_no_voltage =
⎛
⎝

n01

n02

⎞
⎠

represents the number of electrons present in the dots without external voltage ap-
plied. For higher values, more negative voltages are needed to deplete the quantum
dots. Thus, the honeycomb structure of the CSD is shifted to the left, respectively,
lower side. This parameter should be set to 0 for both dots to be consistent with the
Hubbard model, which is presented in Section 2.4.2.

• lead_capacitances =
⎛
⎝

Cl1

Cl2

⎞
⎠

contains the capacitances for the coupling to the leads. Larger values result in a
smaller angle, greater than 90°, between the lead transitions and a smaller length
of the inter-dot transition, because the slopes of the lead transitions are changed.
Moreover, the honeycomb structure is shifted to the left, respectively, lower side of
the image. The impacts of changing this parameter are visible in Figure 2.7.

• gate_capacitances =
⎛
⎝

Cp1

Cp2

⎞
⎠

contains the plunger gate capacitances. For larger values, the honeycombs are
smaller on the corresponding axis of the diagram. The impacts of changing this
parameter are visible in Figure 2.8.

• cross_capacitances = (C12 C21)
is an (n-1)x2 matrix containing the capacitances between the dots and the next-
neighbor plunger gates. It is reasonable to set C12 =C21 because the gate layout is
symmetric. In that case, the honeycombs are more compressed diagonally, along
the angle bisector between both axes for higher values (see Figure 2.9).

• cross_dot_capacitances = (Cm)
is an (n-1)x1 matrix containing the cross-dot capacitance between the dots. It
affects the angle between the lead transitions which increases with larger values.
Moreover, the length of the inter-dot transition increases (see Figure 2.10).

• lead_voltages =
⎛
⎝

Vl1

Vl2

⎞
⎠

contains the lead voltages. The lead voltages are the voltages applied at the source
and drain, i.e., the electron reservoir. For higher values, the honeycomb structure
shifts to the left, respectively, lower side of the diagram. This effect can be seen in
Figure 2.7.

• coeff =
⎛
⎝

ax1 ay1 b1

ax2 ay2 b2

⎞
⎠

(no virtual gates)
=

⎛
⎝

1 0 0
0 1 0

⎞
⎠

contains the coefficients for setting the voltages for the virtual gates according to
V g = a⃗x∗V x+ a⃗y∗V y+ b⃗.

• lims =
⎛
⎝

minV x maxV x

minV y maxV y

⎞
⎠

contains the voltage ranges for the plunger gates.
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2 Theoretical Fundamentals

• nPoints = (nx ny)
contains the number of measuring points in the horizontal and vertical direction.
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lead_capacitances: 2 ⋅10−17,2 ⋅10−17,
gate_capacitances: 1.5 ⋅10−17,1.5 ⋅10−17,
cross_capacitances: 1 ⋅10−18,
cross_dot_capacitances: 1.5 ⋅10−17,
lead_voltages: 0.001,0.001

Figure 2.6: Example of a CSD simulated with the capacitive model. The parameters used
here are taken as default for Figures 2.7 to 2.11. They are chosen to visualize
the effect but are not assumed to be realistic.

(a) lead_capacitances:
6 ⋅10−17,2 ⋅10−17

(b) lead_capacitances:
2 ⋅10−17,6 ⋅10−17

(c) lead_capacitances:
6 ⋅10−17,6 ⋅10−17

Figure 2.7: Effects of the change of lead_capacitances. Larger values result in a
smaller angle between the lead transitions, and smaller length of the inter-dot
transition, as well as a shallower, respectively steeper, slope of the lead transi-
tions in P2/P1-direction, and a shift of the honeycomb to the left, respectively,
lower side of the diagram a change of Cl1/Cl2 .
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2.4 Physical Models for Charge Stability Diagrams

(a) gate_capacitances:
3 ⋅10−17,1.5 ⋅10−17

(b) gate_capacitances:
1.5 ⋅10−17,3 ⋅10−17

(c) gate_capacitances:
3 ⋅10−17,3 ⋅10−17

Figure 2.8: Effects of the change of gate_capacitiances. For larger values, the lead
transitions are closer together on the corresponding axis of the diagram.

cross_capacitances:
3 ⋅10−18

Figure 2.9: Effects of the change of
cross_capacitances. The
honeycombs are more com-
pressed diagonally, along the
angle bisector between hor-
izontal and vertical axis for
higher values.

cross_dot_capacitances:
3 ⋅10−17

Figure 2.10: Effects of the change of
cross_dot_capacitances.
With increased values, the
angle between the lead
transitions increases and the
inter-dot transition becomes
longer.

(a) lead_voltages:
0.003,0.001

(b) lead_voltages:
0.001,0.003

(c) lead_voltages:
0.003,0.003

Figure 2.11: Effects of the change of lead_voltages. For higher values, the honeycomb
structure shifts to the left respective lower side of the diagram.
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2 Theoretical Fundamentals

2.4.2 Hubbard Model

In the absence of quantum effects, the Hubbard model is equivalent to the capacitive
model [2]. However, it can be extended to include quantum effects such as tunnel coupling
between the two quantum dots. Yang et al. [2] limited their Hubbard model to a DQD
with each dot capable of holding between zero and two electrons.
To find a mapping between the capacitive and the Hubbard model, Equation (2.6) should
be reformulated using the charging energies ECi and electrostatic coupling energies ECm

instead of the capacitance matrix. The matrix containing these energies is defined by

EC = e2C−1
cc , (2.10)

where the diagonal of EC contains the charging energy and the off-diagonal entries contain
the electrostatic coupling energy. The charging energy is the energy required to add one
electron to the dot, while the electrostatic coupling energy describes the change in energy
on one dot when an electron is added to the other dot. Using the energy matrix EC instead
of Ccc leads to

Edot(N1,N2) =
1
2

e2(Q⃗c−CcvV⃗v)TEC
T(Q⃗c−CcvV⃗v). (2.11)

For the Hubbard model without quantum effects, the electrostatic energy can be described
by

E ′(N1,N2) = ∑
i=1,2
[µiNi+

Ui

2
Ni(Ni−1)]+U12N1N2, (2.12)

where Ui is the Coulomb interaction3 at dot i and U12 is the Coulomb interaction between
the dots. The electrochemical potential can be calculated by

µ1 = ∣e∣(α1VP1 +(1−α1)VP2)+γ1,

µ2 = ∣e∣((1−α2)VP1 +α2VP2)+γ2.
(2.13)

Comparing Equation (2.12) with Equation (2.11) leads to the following mapping [2]:

Ui = ECi ,

U12 = ECm ,

γi = −Ui/2,

α1 =
(U2U12)U1

U1U2U2
12

,

α2 =
(U1U12)U2

U1U2U2
12

.

(2.14)

3electrostatic interaction between electric charges
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2.4 Physical Models for Charge Stability Diagrams

When quantum effects should be visible in the simulated CSD, this model has to be ex-
tended. The extended Hubbard model can be described by

H =Hµ +HU +Ht +HJ (2.15)

with Hµ and HU describing the terms including the electrochemical potential and the
Coulomb interaction which are already included in the Hubbard model without quantum
effects, Ht representing the terms belonging to tunneling effects, and HJ including spin-
exchange, pair-hopping, and occupation-modulated hopping. Spin-exchange means that
two electrons swap their spins, while the overall spin state in the system does not change.
Pair-hopping means that two electrons tunnel from one dot into the other at the same time,
and the occupation-modulated hopping term describes situations where the occupation of
the dots influences the electron tunneling. However, these second-order terms have only a
negligible influence on the electrostatic energy of the system for low occupation numbers.
To simulate a CSD, the eigenenergy has to be computed first. This is done by computing
an eigenvalue decomposition of the Hamiltonian matrix belonging to H. The electron
number in the two dots is then calculated by computing the minimum of the eigenenergy.
For the simulation of CSDs with the Hubbard model, the implementation available in
QuDiPy [32] is used. It is capable of simulating n-dot systems. However, each dot can
hold only two electrons. The term HJ is neglected in this implementation. Parameters for
the Hubbard model implementation are listed in the following.

• n_sites is the number of dots, being two for a DQD.

• n_electrons is the maximal number of electrons in the dot system, with two times
the number of dots being the maximal possible value. As many transition lines are
favored, this value is set to four.

• U_11, U_22, and U_12 are the Coulomb interactions at the two dots and between
the dots. U_11 and U_22 stretch the honeycombs horizontally and vertically, respec-
tively (see Figure 2.12b and Figure 2.12c), whereas U_12 stretches the honeycomb
diagonally and thus influences the angle at the triple points and the length of the
inter-dot transition (see Figure 2.12d). By stretching the honeycombs the slopes of
the lead transitions are also affected.

• t_12 is the tunnel coupling between the dots. With increasing values the inter-dot
transitions get more blurred and the triple points more curved (see Figure 2.12e).

• inital_v = (v_g1_min v_g2_min) is the initial voltage applied at the double dot
plunger gates

• v_g1_max, and v_g2_max determine the maximal voltage applied at the double dot
plunger gates.

• num gives the resolution in the number of pixels along each axis leading to a CSD
with num2 pixels.
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(a) U_11 = 8.36 ⋅10−3, U_22 = 9.38 ⋅10−3,
U_12 = 2.60 ⋅10−3, t_12 = 0.30 ⋅10−3

(b) U_11 = 10.36 ⋅10−3

Horizontally stretched for larger values
(c) U_22 = 11.38 ⋅10−3

Vertically stretched for larger values

(d) U_12 = 3.60 ⋅10−3

Diagonally stretched for higher values,
influencing the angles

(e) t_12 = 0.01 ⋅10−3

Sharper inter-dot transition for lower values

Figure 2.12: Examples of CSDs simulated with the Hubbard model for different parame-
ters. The parameters are chosen to visualize their effect but are not assumed
to be realistic. In (b, c), the slope of the respective lead transition is also
influenced.

18
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2.4.3 Comparison of Models

Both the capacitive and the Hubbard model have advantages and drawbacks. The capac-
itive model has more parameters, which leads to more possible shapes of the honeycomb
pattern. However, it is also harder to determine useful parameters because more than one
parameter influences the same property of the diagram. The Hubbard model has less pa-
rameters and the authors of this model describe a way to determine these parameters from
experimental CSDs [2]. This makes it easier to create authentic simulated diagrams.
While the capacitive model does not contain quantum effects, it can, unlike the Hub-
bard model, simulate more than two electrons per dot. However, this does not impose a
strict limitation on the Hubbard model as also the available experimental CSDs usually
only contain one inter-dot transition. Moreover, if applications focus on triple points and
inter-dot transitions, simulations from the Hubbard model should be included, because
quantum effects change their appearance drastically. For applications that mainly analyze
lead transitions, e.g., for classification if a single or double dot is present, the capacitive
model might suffice. However, it might lead to worse classification results for these ap-
plications if the transitions are more curved.
Generally, the Hubbard model is more beneficial for the simulation of the ground truth
CSD data as it includes more relevant phenomena of the real world.

2.5 Distortions in Charge Stability Diagrams

The CSDs examples presented in Section 2.4 are still very different from the CSDs gen-
erated by experimental measurements (see Figure 2.13). This is because there are many
different types of distortions in experimental CSDs.
Instead of homogeneous honeycombs, value drifts are visible inside them. This phe-
nomenon results from a cross-coupling between the SD and the plunger gates of the DQD.
Moreover, different types of noise are present in the experimental CSDs and at dot jumps
the transition lines are shifted (see red box in Figure 2.13).
In this section, the different noise types and artifacts that appear in CSDs are analyzed,
including their physical sources and simulations as well as the parameters required for
their simulation.
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(a) Simulated CSD
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(b) Experimental CSDs

Figure 2.13: Comparison between (a) a CSD simulated with the Hubbard model and (b)
experimental ones. The red box in the first experimental CSD marks a dot
jump further described in Section 2.5.5.

2.5.1 Cross-Coupling between Sensor and Double Dot Plunger
Gates

Cross-coupling effects between the SD and the plunger gates of the DQD influence the
visibility of the charge transitions in the CSDs and lead to value shifts inside the hon-
eycombs. Physical models like the Hubbard model only simulate the occupation states
for the different gate voltages. They incorporate a very basic sensor response which only
consists of a linear combination of the number of electrons in the dots.
The following model gives a more realistic version of the SD response:

µsens =
2
∑
i=1
[αdot,i ⋅nelec,i+αgate,i ⋅vgate,i]+µo f f

S = So f f +a ⋅ γ2

γ2+(µsens−µ0)2
,

(2.16)

where i = 1 corresponds to the left dot, whose plunger voltage is usually displayed on the
horizontal axis, and i = 2 to the right dot, whose plunger voltage is usually displayed on
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the vertical axis of the CSD. In this model, µsens represents the electrochemical potential
of the SD, which is influenced by the number of electrons nelec in the two dots and the
voltages applied to the plunger gates vgate. The parameters αdot,i for the SD potential in-
fluence the sharpness of the edges, while the parameters αgate,i influence the drifts within
the honeycombs. The effect of the applied voltages and the number of electrons is con-
trary to each other. The number of electrons has a negative effect on the potential (αdot

negative), whereas the applied voltage has a positive effect (αgate positive). Furthermore,
an offset µo f f is added to the potential, which determines where the CSD measurement
starts on the curve.
The SD response S is approximated by a simplified Lorentzian [33], see Figure 2.14a. γ

determines its width and µ0 is the potential at the peak of the curve. As the sensor re-
sponse is transformed by linear filters in the experimental setup, the Lorentzian is scaled
by a factor a and an offset So f f is added. In Figure 2.14b, an example of a simulated CSD
that includes the cross-coupling effects is shown. Instead of the electrochemical potential,
the sensor scans are measured in dependency on the voltage applied at the sensor plunger
gate (see Figure 2.14a). As the applied voltage is proportional to the electrochemical
potential at the sensor, both terms are used interchangeably in the following.
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(b) Simulated CSD including sensor response

Figure 2.14: Example of the sensor response simulated at the left side of the peak leading
to low values in the lower left region of the CSD and high values in the upper
right region.

2.5.2 White Noise

White noise consists of thermal and shot noise. Thermal noise originates from the thermal
agitation of charge carriers, usually electrons, in an electrical conductor [34]. Thus, it is
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stronger for higher temperatures.
Unlike thermal noise, shot noise depends on the discrete charges in the current flow and
does not have a relation to the temperature at which the system is operating [35].
Both types of noise are approximately white, which means that their strength is not fre-
quency dependent leading to a constant power spectral density (PSD) (see Figure 2.15).
While thermal noise has a nearly Gaussian amplitude distribution, shot noise can be mod-
eled by a Poisson process. However, as the Poisson distribution can be approximated by
a normal distribution, all white noise can be generated by adding Gaussian distributed
random variables to the clean image. The only parameter needed is the standard deviation
of the Gaussian distribution σwhite.
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Figure 2.15: Example for the white noise simulation. a) Simulated CSD with added white
noise and b) PSD of the generated noise.

2.5.3 Pink Noise

Pink noise, also known as 1/ f or flicker noise, is observed in most electronic devices, and
originates from the internal heterogeneity of electronic components, such as oxide traps
or lattice dislocations [36]. In contrast to white noise, the PSD is inversely proportional to
the frequency (see Figure 2.16b). This leads to stripes inside the linewise measured CSDs
that are also visible in the simulated CSDs with added pink noise (see Figure 2.16a).
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Figure 2.16: Example of the pink noise simulation. a) Simulated CSD with added pink
noise and b) PSD of the generated noise.

The simulation of pink noise is described in [37] and implemented in the python module
colorednoise [38]. The algorithm allows for randomness in both the phase and the
amplitude of the noise time series. It consists of the following steps:

1. For each Fourier frequency ωi of the data, draw two Gaussian distributed random
numbers and multiply them by

√
1
2S(ωi) with S(ωi) being the power law spectrum

of the noise. For pink noise, it equals 1
ω

.

2. Use the generated random variables as the real and imaginary part of the Fourier
transform of the desired noise time series. This leads to a Fourier transform f (ω) ∼
N (0, 1

2S(ω))+ iN (0, 1
2S(ω)).

3. To obtain a real-valued time series, choose the Fourier transform of the negative
frequencies as their complex conjugation.

4. Obtain the time series by applying a backward Fourier transform from the frequency
to the time domain.

2.5.4 Random Telegraph Noise

Random telegraph noise (RTN) or burst noise randomly switches between two or multi-
ple discrete levels [36]. It can be explained by a time-dependent random capture/emission

23



2 Theoretical Fundamentals

process of charge carriers caused by oxide traps [39]. Its PSD is proportional to 1/ f 2 (see
Figure 2.17b), which means that it only plays a role for low frequencies. In the simulated
image, it is visible as stripes with a specific beginning and ending (see Figure 2.17a).
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Figure 2.17: Example for the RTN simulation. (a) Simulated CSD with added RTN and
(b) PSD of the generated noise.

It can be simulated using a geometric distribution for the occurrence of bursts and a nor-
mal distribution for the height of jumps [24]. The parameters for this noise type are the
expectation of the length of the jumps, the standard deviation of the height of the jumps,
and the expectation of the height of the jumps.

2.5.5 Dot Jumps

Dot jumps have a similar origin as RTN. However, while the RTN originates from the
effects of random charge traps on the sensor, dot jumps describe a charge-trapping effect
on the quantum dots themselves, which are pandered by fabrication-related imperfec-
tions. Dot jumps lead to structural offsets in the CSDs [24]. An analysis of the available
experimental data shows, that the dot jumps most likely happen at specific voltage con-
figurations and are thus deterministic. That means they can be simulated by shifting a
block of columns horizontally or a block of lines vertically. In the first case, the first
plunger causes the occurrence of the dot jumps. Thus, the charge trap also affects the
electrochemical potential of the first dot, leading to a shift in the horizontal direction. In
the other case, the second plunger causes the occurrence of dot jumps. Figure 2.18 shows
a simulation of a dot jump in the horizontal direction.
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2.5 Distortions in Charge Stability Diagrams
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Figure 2.18: Example of a simulated CSD with dot jumps

The occurrence of jumps can be simulated by a geometric distribution, while the strength
of the jumps is determined by a Poisson distribution [24]. The parameters are the expec-
tation for the length of the jumps and the expectation for the height of the jumps.
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3 Determination of Parameters for
the Simulation of Charge Stability
Diagrams

Depending on the experimental setup and various external influences, which can change
for each cool-down cycle, the parameters’ values for the identified distortions vary. To
simulate realistic distortions for the CSD data, parameter ranges have to be extracted
from the experimental images.
In addition to the parameters of the distortions, the parameters for the undisturbed CSDs
have to be determined.

3.1 Hubbard Model

In [2], a strategy for determining the Coulomb interactions required for simulations with
the Hubbard model is given. The inter-dot Coulomb interaction U_12 is determined by
the length of the inter-dot transition which equals

√
2 ⋅U_12. The authors assume equal

onsite Coulomb interactions U_11 and U_22 and suggest deriving them from the slope
of the (1,1)-(2,1)-transition. This slope equals α

α−1 , where α refers to α1 and α2 from
Equation (2.14). Then, U = U_11 = U_22 can be obtained from

α = (U −U_12) ⋅U
U2−U_122 = (U −U_12) ⋅U

(U −U_12) ⋅(U +U_12)
= U

U +U_12
. (3.1)

Using this approach, the length of the inter-dot transitions and slopes of the lead transi-
tions are mimicked well (see Figure 3.1). For the shown images, the determination of the
tunnel coupling t_12 takes place manually by choosing a value that results in a similar
blurring and rounding as in the experimental CSDs. However, the size of the honeycombs
does not fit the size of the honeycombs in the experimental data.
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(b) Simulated CSD
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(c) Experimental CSD
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(d) Simulated CSD

Figure 3.1: Two examples of noisy experimental CSDs with a simulated version without
noise, whose parameters are determined as suggested in [2]

To overcome this problem, another model based on observations from the Hubbard model
is used to simulate the honeycomb structure of the CSDs. This model is subject to current
research by Fabian Hader, working at ZEA-2, with publications being expected in the fu-
ture. The model uses the slopes of the lead transitions, the width and length of the inter-dot
transition, and the lengths of the lead transitions in the horizontal and vertical direction,
which can be extracted directly from the experimental CSDs (see Figure 3.3a). This leads
to simulated CSDs that are very similar to the experimental ones (see Figure 3.2).
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(b) Simulated CSD
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3.1 Hubbard Model

-0
.2

42

-0
.2

37

-0
.2

32

-0
.2

27

-0
.2

22

-0
.2

17

P1 [V]

-0.225

-0.22

-0.215

-0.21

-0.205

-0.2

P2
 [V

]

0.190

0.185

0.180

0.175

0.170

0.165

0.160

0.155

se
ns

or
 si

gn
al

 [a
.u

.]

(c) Experimental CSD

-0
.2

42

-0
.2

37

-0
.2

32

-0
.2

27

-0
.2

22

-0
.2

17

P1 [V]

-0.225

-0.22

-0.215

-0.21

-0.205

-0.2

P2
 [V

]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

se
ns

or
 si

gn
al

 [a
.u

.]

(d) Simulated CSD

Figure 3.2: Two examples of noisy experimental CSDs with a noiseless version simulated
with Hader’s model

For the simulation of a large set of CSDs, parameter ranges have to be extracted from the
experimental data. The different parameters which should be determined are visualized
in Figure 3.3. As slope2 is sometimes near infinity in the original CSDs the wavefronts
are rotated by 45° for the simulation (see Figure 3.3b). The required parameters for the
simulation are listed in the following.

• slope1 is the slope of the lines that indicate a transition of an electron between
the reservoir and the right dot. In the rotated space, this is the slope between a
minimum and the following maximum of a wavefront.

• slope2 is the slope of the lines that indicate a transition of an electron between the
reservoir and the left dot. In the rotated space, this is the slope between a maximum
and the next minimum.

• length1 and length2 are the lengths of the lead transitions given by the distance
on the horizontal axis between a minimum and a maximum respective maximum
and minimum in the rotated space.

• angle_lead names the angle between the lead transitions. It is used in the sim-
ulation to ensure that randomly chosen slopes have a reasonable relation to each
other.

• angle_id denotes the angle between the lead transitions of the second quantum
dot and the inter-dot transition. It is used in the simulation to determine the slope
of the inter-dot transition.

• id_length is the length between two triple points, i.e., the length of the inter-dot
transition.

• id_width specifies the length of the curvature of a transition line, which mainly
depends on the tunnel coupling between the dots, i.e., the width of the inter-dot
transition.

29



3 Determination of Parameters for the Simulation of Charge Stability Diagrams

angle_lead

angle_id

(a) Original

length2 length1

id_width

(b) Rotated

Figure 3.3: Visualization of the different parameters determined from the experimental
CSDs. (a) Shows the parameters in the original image, and (b) shows the
second wavefront of this image rotated by 45°.

To determine the parameter ranges, the points marked with arrows in Figure 3.3 are ex-
tracted from 60 experimental CSD with visible edges. However, CSDs that were mea-
sured with virtual gates cannot yet be created with the simulation model of Fabian Hader.
This means that they are not used for the parameter determination and the evaluation of
the simulated CSDs.
To determine the parameters from the experimental CSDs, the diagrams are displayed
with the help of OpenCV and a callback function is added to the window containing the
CSD. It is executed after a mouse click inside the image window and asks the user for the
type of the point clicked on. After all the points are marked, the parameter ranges shown
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3.2 Sensor Response

in Table 3.1 are calculated. Only length1 is not directly extractable from the CSDs used
for the parameter determination because, in most of the diagrams, the voltages space is not
large enough to show more than one inter-dot transition. To overcome this problem, the
determined range for length2 is assumed to be a reasonable approximation for length1
due to the symmetry of the used gate layout.
Moreover, the relation between id_width and id_length is important for the simulation
because a more curved triple point also leads to a longer inter-dot transition. The relation
between id_width and id_length lies between 0.86922 and 9.05538.

Table 3.1: Parameters for the simulation of the honeycomb pattern extracted from the
experimental CSDs. They are determined from the image rotated by 45°.

parameter minimum maximum

slope1 0.21429 0.54688
slope2 -0.44 -0.07692
length1 0.01543 0.01671
length2 0.01543 0.01671

angle_lead 25.07313° 96.19746°
angle_id 33.31974° 80.0387°
id_length 0.00261 0.00987
id_width 0.00043 0.00814

3.2 Sensor Response

The parameters of the Lorentzian, describing the sensor peak, can be derived from so-
called sensor scans. They show the sensor response as a function of the voltage applied at
the plunger gate of the corresponding SD, SP1, or SP2. As the plunger gate has a direct
influence on the electrochemical potential of the SD µsens, the parameters So f f , a, γ and
µ0 can principally be derived by fitting the Lorentzian (see Equation (2.16)) to the ex-
perimental sensor scan. Then, αdot and αgate (see Section 2.5.1) can be determined from
a measured CSD using the fitted Lorentzian. As the shape of the sensor peak depends
on the voltage configuration of the DQD and SD barrier gates, a corresponding sensor
scan with matching voltage configurations is required for each CSD. Moreover, to avoid
different external influences on the measurements, the sensor scan should be done shortly
before the CSD measurement.
After the parameters of the Lorentzian are determined, the inverse function of the fitted
sensor curve can be used to calculate the electrochemical potential of the SD for the ex-
perimental CSD. However, as the Lorentzian is not a monotone function, a true inverse
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3 Determination of Parameters for the Simulation of Charge Stability Diagrams

does not exist. Instead, only the left side of the curve is used. This is possible because
of the symmetry of the Lorentzian used. The calculated electrochemical potential at the
sensor is then used to calculate αdot and αgate. For this, the absolute value of the gra-
dient of the electrochemical potential can be used because the sign of both parameters
is known. In this case, the gradients in the horizontal and vertical direction are used to
calculate αdot,1/αgate,1 and αdot,2/αgate,2, respectively. The median of the absolute gra-
dient values in regions without edges approximates αgate. Using the median instead of
the mean ensures higher robustness to outliers which are caused by noise. After that,

∑2
i=1 αgate,i ⋅ vgate,i is subtracted from the electrochemical potential at the sensor, to com-

pensate for the effect of αgate for a better approximation of αdot . αdot is then calculated
as the negative value of the median of the highest 5% of gradient values inside the regions
marked as edges.
To be able to determine the regions with edges, masks are generated manually, as shown
in Figure 3.4. As αdot,1 determines the edge strength in the horizontal direction and αdot,2

in the vertical direction, the edges in both directions are marked with different labels to
avoid using the wrong edge for αdot,1 or αdot,2.
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Figure 3.4: Example of a mask used to mark edges to determine the parameters of the
sensor response

The problem with this approach is that the value ranges of the CSDs do not match the
value ranges of the corresponding sensor scans in most cases. This is because the CSDs
are transformed linearly during the measurement. As these postprocessing steps are not
reversible, the fitted sensor responses are also transformed to match the value range of the
CSD. This is done by calculating the inverted Lorentzian of the CSD in non-edge regions
and fitting the offset So f f and the scaling factor a by minimizing the sum of the squared
standard deviation of its gradients in the horizontal and vertical direction. The standard
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3.2 Sensor Response

deviations of the gradients should be low because the value of αgate should be constant
throughout the entire CSD. Without any normalization of the inverted Lorentzian, the
minimization would choose infinitely high scaling factors. This is the case because the
corresponding inverted values are very close to each other, leading to gradient values near
zero with a low standard deviation. To avoid this, the inverted Lorentzian is applied to the
CSD, the result is scaled to values between zero and one, and the gradient of the normal-
ized inverted Lorentzian is used for the computation of the error function. To minimize
the optimization function, SciPy’s minimization function is used [40]. Per default, it uses
a BFGS1 [41] method for the minimization.
The parameters for the sensor response are determined in 16 CSDs and their correspond-
ing sensor scans. Table 3.2 lists the determined ranges.

Table 3.2: Parameter ranges of the sensor response determined from 16 experimental
CSDs and their corresponding sensor scans

parameter minimum maximum

So f f -2.06246 -0.08386
µ0 -0.12168 -0.03824
a 0.02251 1.9362
γ 0.0009636 0.0029509

αgate,1 0.00622 0.15057
αgate,2 0.00675 0.19451
αdot,1 -0.0005532 -0.0000318
αdot,2 -0.0004404 -0.0000151

For the simulation with these parameters, the ratio between αgate and γ is also important
because for very high ratios, the peak of the sensor curve only occupies a very small
region in the CSD (see Figure 3.5). In this case, the peak of the sensor curve is visible
inside a CSD as a diagonal stripe with high values, which can be interrupted by the lead
transitions. αgate should be less than 100 ⋅γ for the simulated CSDs as this is the magnitude
that can be observed in the experimental CSDs.

1developed by Broyden, Fletcher, Goldfarb, and Shanno
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Figure 3.5: Simulated CSD with a ratio between αgate and γ of more than 150 with
αgate,1 = 0.15057, αgate,2 = 0.19451, and γ = 0.0009636

3.3 Pink and White Noise

The strengths of both pink and white noise can be determined with the help of the PSD
of the noise in the experimental CSDs. The PSD is computed with the help of Welch’s
method [42] implemented in SciPy [43]. It functions by dividing the data into overlapping
segments, computing a modified periodogram for each segment, and averaging these.
The modified periodogram uses a special window to minimize artifacts in the Fourier
transform of the auto-correlation function of the signal. To compute the PSD, the two-
dimensional image is flattened, meaning that the rows of the image are concatenated to a
one-dimensional array. This brings the pixels in the order they were measured.
The power spectral densities for white and pink noise are given by

PSDwhite = cwhite ⋅σwhite,

PSDpink =
cpink

f
⋅σpink,

(3.2)

where cwhite ≈ 2 and cpink ≈ 0.1. These constants are determined by generating white,
respectively, pink noise with strengths between 0.00001 and 0.1 and computing its esti-
mated PSD with Welch’s method. Then, the formulas given in Equation (3.2) are fitted to
the estimated PSDs of the generated noise by minimizing the sum of squared errors with
the help of SciPy’s minimization function [40]. The median of the minimization results
is taken as an approximation for cwhite and cpink.
The values for σwhite and σpink can be determined similarly. If both types of noise are
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3.3 Pink and White Noise

present, the following equation holds:

PSDwhite+pink = cwhite ⋅σwhite+
cpink

f
⋅σpink. (3.3)

However, this cannot be directly applied to the experimental CSDs because the honey-
comb pattern of the CSD influences the shape of the PSD. That means the noise inside
the experimental CSDs has to be approximated first. For images without sharp edges, this
can be done by applying a Gaussian filter and a spline interpolation to the image and sub-
tracting the smoothed image from the original one [16]. However, for CSDs with distinct
edges, this leads to an overestimation of the noise at edges. A solution to this is to remove
the edges from the signal. As edge detection in CSDs is still an ongoing task, the edges
have to be marked manually. This is done with a mask as shown in Figure 3.6. In addition
to the edges, every first pixel of a row is marked as an edge because the concatenation of
the rows leads to edges at the concatenation points.
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Figure 3.6: Example of a mask used to mark edges to determine the strengths of white
and pink noise

To remove the edges, the gradient of the CSD is approximated b backward differences.
Then, the edges can be removed by adding the backward difference of the edge pixel to its
value. As edges are often wider than only one pixel, the same is done for the neighboring
pixels of the marked edge. Figure 3.7 shows an example of the edge removal in a line of
a CSD. For the edges, which are created at the beginning of each line by flattening the
image, the neighboring pixels are not affected by the edge removal.
The lowest frequencies in the PSD might contain other types of noise like RTN and also
the signal itself might affect these frequencies. Therefore, the lowest 15 frequencies are
excluded for the determination of σwhite and σpink. Per default Welch’s method computes
the estimated PSD for frequencies between 0Hz and 0.5HZ in steps of 1

256 . Leaving out
the 15 lowest frequencies leads to a frequency range of 0.05859375Hz to 0.5Hz consid-
ered for the estimation of the noise strength.
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Figure 3.7: Example of a line of a CSD where the edges are removed

To test the accuracy of this estimation method, the noise strengths are estimated for a
simulated image with different combinations of white and pink noise. The three different
cases in Table 3.3 are considered. For the simulation of the noiseless data, a representative
set of parameters is chosen for the structure of the honeycombs and the sensor response.
The resulting image is shown in Figure 3.8.

Table 3.3: Cases analyzed for the accuracy of the estimation of pink and white noise in
CSDs with clear edges

evaluation case σwhite σpink

σwhite = σpink 0.001 0.001
σwhite < σpink 0.0001 0.001
σwhite > σpink 0.001 0.0001
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Figure 3.8: Simulated noiseless test image with strong edges
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3.3 Pink and White Noise

The resulting relative noise strength errors derived from 100 simulations each are shown
in Figure 3.9. The relative error is calculated as

σe−σgt

σgt
,

where σe is the estimated noise strength and σgt is the ground truth. For a similar amount
of white and pink noise, the estimation seems to work well. However, white noise is
slightly underestimated, while pink noise is overestimated. This behavior is even stronger
in the other cases. For lower white noise, the method often estimates no white noise, while
for lower pink noise, the estimated pink noise strength is more than ten times higher than
the ground truth. This is mainly because the noise cannot be approximated perfectly,
which leads to higher PSD values, especially for low frequencies.
In conclusion, the estimated noise strength does not perfectly match the actual noise
strength but the estimate is usable to get a first idea of the amount of noise typically
present in the CSDs. For the simulation, it has to be kept in mind that pink noise is often
overestimated and white noise is underestimated for this noise estimation method.
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Figure 3.9: Boxplots of relative errors between the estimation and real noise strength for
different ratios of white and pink noise in a simulated image with strong edges.
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3 Determination of Parameters for the Simulation of Charge Stability Diagrams

In addition to the CSDs with distinct edges, CSDs without edges or with only weak edges
are analyzed. For these CSDs, a two-dimensional Gaussian kernel and bivariate spline
interpolation are executed to approximate the noiseless signal. The noise is estimated by
subtracting the noiseless approximation from the original image. To test the accuracy of
this method, a simulated CSD with an αdot ten times lower than the one in Figure 3.8 is
used. The noiseless image is shown in Figure 3.10. The added noise has the same strength
as in the investigations for strong edges.
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Figure 3.10: Simulated noiseless test image with low edge strength

The resulting relative noise strength errors derived from 100 simulations each are shown
in Figure 3.11. Contrary to the method used for strong edges, this method tends to un-
derestimate pink noise in all cases and overestimate white noise in most cases (see Fig-
ure 3.11). However, for stronger pink noise, also white noise is underestimated slightly.
The dominant type of noise is estimated quite well.
In conclusion, this type of estimation has a higher accuracy than the one used for CSDs
with edges as the relative errors deviate less. Thus, it is suitable to get an insight into
typical noise strengths in CSDs.
The strengths of white and pink noise are determined in 20 CSDs with visible edges and
20 CSDs without clearly visible edges. This results in the ranges shown in Table 3.4. For
the results in this table, an outlier with a value of 0.0222391, determined in an image with-
out edges, was removed. In this case, the high value comes from some frequencies with
an overproportional high power in comparison to the other frequencies which is probably
caused by an environmental influence.
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3.3 Pink and White Noise
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Figure 3.11: Boxplots of relative errors between estimation and real noise strength for dif-
ferent ratios of white and pink noise in a simulated image with weak edges.
For all three analyzed cases the errors for white and pink noise estimation
are shown separately.

Table 3.4: Estimated ranges for the strengths of white and pink noise. For pink noise
determined in images without edges, an outlier with a value of 0.0222391 is re-
moved as the characteristic of noise in this image does not fit the other images.

CSD type parameter minimum maximum

with edges σwhite 0.0 0.0007722
σpink 0.0009544 0.0101090

without edges σwhite 0.0000338 0.0053942
σpink 0.0 0.0049787

total σwhite 0.0 0.0053942
σpink 0.0 0.010109
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3 Determination of Parameters for the Simulation of Charge Stability Diagrams

For the dataset without edges, the relation between white and pink noise is balanced,
whereas pin noise dominates for the dataset with edges. This is most likely an effect of the
edge removal algorithm as the pre-study concerning the accuracy of the noise estimation
shows an overestimation of pink noise in all evaluation cases. For data without edges, the
pre-study showed that pink noise is underestimated in more cases than white noise. This
suggests that even though the strength of white noise is slightly higher in the set of CSDs
without edges similar ranges should be used for the simulation of white and pink noise.
Moreover, a noise strength of zero is unrealistic because both noise types are present in
all electronic devices.

3.4 Random Telegraph Noise

The automatic detection of RTN in CSDs is still an unsolved problem. Therefore, the de-
tection of bursts for the parameter determination of the RTN is done manually. However,
the bursts in CSDs often cannot be distinguished from the pink noise. In contrast, bursts
in sensor scans can be detected much easier. Because of this, sensor scans are used for
the determination of the lengths and heights of the bursts. This is possible because the
CSDs are measured with the same sensor used for the sensor scan which leads to similar
characteristics of the noise. Of the 1293 available sensor scans, 118 are chosen randomly.
In these scans, 21 bursts are manually detected and used for the parameter determination.
RTN can be described as a time-dependent stochastic process. To translate the sensor scan
burst length into the CSDs domain, the measurement time for one data point in both scans
has to be compared. As this time is only known for 768 out of 1230 CSDs, the median of
the available values is used for the simulated CSDs. This is a time of 0.00128s for each
pixel which is used for 465 CSDs. Moreover, as CSDs are linearly transformed during
the measurement (see Section 3.2), the heights of the bursts in the sensor scans have to
be transformed similarly. To get a height which is independent of the transformation, the
absolute height of each burst is divided by the scaling factor a of the Lorentzian fitted to
the sensor scan. This height is called the normalized height of the bursts in the following.
The lengths and heights of the bursts are extracted with the help of a canvas.mpl_connect
function which is added to the Matplotlib figure displaying the sensor scan. If a point
in the diagram is selected by a left click, this function saves the coordinates of the clicked
point. For every burst, three points have to be selected to calculate the length of a burst in
the pixel space and the height of the burst as the difference in the sensor response. After
that, the length is translated into the time-domain by multiplying it by the time used for
measuring each pixel. Finally, the length is translated back into the CSD pixel domain
by division by the median of the measuring time per pixel in the CSDs. The normalized
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3.4 Random Telegraph Noise

height is applied to the simulated CSD by multiplying it with the scaling factor a used for
the simulated sensor response.
In this way, the parameter ranges shown in Figure 3.12 are extracted from the experimen-
tal CSDs.
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Figure 3.12: Boxplots of the translated lengths and heights of the bursts found in the sen-
sor scans

The approximated density function of the heights and lengths is calculated with the help
of the Matplotlib hist function. It fits the density function of a normal distribution (see
Figure 3.13a), respectively, geometric distribution (see Figure 3.13b). This indicates that
the assumption in Section 2.5.4 is correct.
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Figure 3.13: Comparison of the approximated and theoretical probability density of the
(a) normally distributed heights of the bursts and (b) geometrically dis-
tributed lengths of the bursts

The parameters of this type of noise are determined with the help of the mean of the
lengths, as well as the mean and empirical standard deviation of the heights, shown in
Table 3.5.
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3 Determination of Parameters for the Simulation of Charge Stability Diagrams

Table 3.5: Parameters for the RTN determined from experimental CSDs
parameter determined value

expected length 74.56704
expected height 0.01297

standard deviation of height 0.01784

3.5 Dot Jumps

As for the RTN, there is no method for detecting the dot jumps automatically yet. In the
available data, there are six CSDs with shifted edges that could belong to a dot jump.
However, no jump back is visible inside these CSDs. Hence, only the strength of the
jumps can be extracted but not the length. Moreover, in the horizontal direction, only one
jump could be observed. This indicates that for the used sample, it is more likely that the
charge traps affect the second plunger gate.
The determined jump strengths are between 4 and 8 pixels with a mean of 6 pixels. As the
jumps back are not visible inside the CSDs, an expectation of 100 pixels for the length of
the jumps is assumed for the simulation. This is the size of most CSDs. This leads to the
following parameters which can be used for the simulation of CSDs.

Table 3.6: Parameters for the dot jumps determined from the experimental CSDs
parameter determined value

expected length 100
expected strength 6
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4 Generation and Evaluation of
Simulated Data

In this chapter, the evaluation of the simulated data is described and the results are pre-
sented. In the beginning, the generation of a simulated dataset of CSDs is explained. The
dataset should be evaluated concerning the fidelity and diversity of the generated samples.
This is done by comparing it with an experimental dataset. However, not all experimental
CSDs are usable for that, as explained in Section 4.2.
To evaluate the authenticity of the simulated data, different approaches are presented in
Section 4.3 and Section 4.4.
As possibly that not all parameters of the simulated CSDs are set correctly, the evaluation
is split into two steps. This is the case because the different types of distortions might
influence each other which leads to a bias in the parameters determined from the experi-
mental CSDs.
For each step, a separate set of experimental data is used for the comparison. First, the
simulated dataset is evaluated and some parameters are adjusted. Then, the second set of
experimental data is used for the final evaluation of the data simulated with the adjusted
parameters.

𝐶𝑆𝐷𝑒𝑥𝑝
(303 CSDs)

𝐶𝑆𝐷𝑒𝑥𝑝1
(149 CSDs)

𝐶𝑆𝐷𝑒𝑥𝑝2
(154 CSDs)

Simulation 
model

refinement

Final evaluation

𝐶𝑆𝐷𝑠𝑖𝑚1

(149 CSDs)

𝐶𝑆𝐷𝑠𝑖𝑚2

(154 CSDs)

Evaluation 
methods

Evaluation 
methods

Figure 4.1: Flow chart of the evaluation procedure
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4 Generation and Evaluation of Simulated Data

In Figure 4.1, the procedure of the evaluation is outlined. The available experimental data
CSDexp is divided into two datasets CSDexp1 and CSDexp2, also referred to as the opti-
mization and evaluation dataset. For the optimization of the simulation parameters and
the refinement of the simulation model, the first simulated dataset CSDsim1 is compared
with CSDexp1. After that, a new optimized simulated dataset CSDsim2 is generated and
compared with CSDexp2 for the final evaluation of the simulation.

4.1 Generation of Simulated Charge Stability
Diagrams

The generation of simulated CSDs consists of the simulation of the clean occupation data
and the addition of the distortions described in Section 2.5. For the generation of the
simulated CSDs, uniform random samples of the determined parameter ranges of Chap-
ter 3 are used. However, it also has to be checked if the relation between the sampled
parameters is consistent with the experimental data. For the clean occupation data, this
includes the calculation of the angle between the simulated lead transitions and compari-
son to the angle_lead values determined from the experimental CSDs. Furthermore, the
id_width is related to the id_length because more curved triple points increase the dis-
tance between them at the inter-dot transition. The relation between the id_length and
id_width lies between 0.86922 and 9.05538 for the experimental data. If the sampled
parameters do not fulfill this, a new sample is drawn.
Moreover, length1 and length2 are sampled from the minimum to two times the maxi-
mum both given in Table 3.1. This is done because the lengths of the lead transitions are
bigger than the determined lengths due to the restricted measurement area of the CSD.
After clean occupation data have been simulated, distortions are added. Their parame-
ters are also sampled randomly and verified for consistency with the experimental data.
For sensor response parameters, the relation between αgate and γ should be below 100.
Moreover, for the strength of always present white and pink noise, a minimum of 1 ⋅10−6

is assumed instead of the determined minimum of zero. The maximum for both noise
types is set to 0.006. RTN is only applied for 1

6 of the CSDs as this is approximately the
percentage of experimental CSDs which contain RTN. Also, dot jumps in the vertical and
horizontal direction are only applied for 1

10 , respectively, 1
60 of the CSDs. The starting

point for the sensor response µo f f is sampled from the interval [µ0 − 2γ,µ0 − γ]. This
region is taken because it has a steep slope which is one of the factors included in the
selection of the sensor peak in the experiment.
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4.2 Selection of Usable Experimental Charge Stability Diagrams

4.2 Selection of Usable Experimental Charge Stability
Diagrams

In the experimental CSDs, there are still some effects present, which cannot be simu-
lated yet. These are CSDs that were measured with the help of virtual gates, leading to
nearly horizontal respective vertical edges with high contrast and very low cross-coupling
between the sensor and the virtual plunger gates (see Figure 4.2a). Moreover, physical
effects like movements of the DQD and parasitic dots lead to curved lead transitions and
irregular line patterns (see Figure 4.2b and Figure 4.2c). Additionally, unknown effects
lead to CSDs that do not fit the current simulation model (see Figure 4.2d and Figure 4.2e).
Thus, the corresponding experimental CSDs are removed before the comparison of both
datasets.
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(b) Curved lead transitions
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(c) Parasitic dot
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(d) Irregular sensor response
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Figure 4.2: Experimental CSDs with effects that are not yet simulatable
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Then, the remaining 303 CSDs are split into two datasets. As both the model refinement
and the final evaluation are equally important, a similar amount of CSDs is used for both
datasets. To represent run-specific effects in both datasets, the data in every run is equally
distributed to the optimization CSDexp1 and evaluation dataset CSDexp2. For an uneven
number of samples in one run, the remaining sample is added to CSDexp2. This leads to
149 CSDs in CSDexp1 and 154 in CSDexp2.
In every experimental data point, there is one CSD measured with the left and one mea-
sured with the right SD. Due to the higher signal-to-noise ratio, only the CSD is used that
is measured with the SD closer to the DQD to be tuned.

4.3 Metrics for Generative Models

The problem of comparing the distributions of generated and real data also appears in the
context of machine learning when evaluating generative models. However, many of the
used evaluation metrics, e.g., Inception Score [44] and Fréchet Inception Distance [45],
are not applicable here because a classification network has to be trained to apply them
or they rely on neural networks that are pretrained on natural images. Moreover, it is
beneficial to compute the metric sample-wise because this allows for analyzing the flaws
of the simulation model. Therefore, the α-Precision and β -Recall metrics are used to
measure the fidelity and diversity of the generated datasets [46]. Both metrics are bound
between zero and one with the aim to maximize them. In [46], a third metric is introduced
that indicates if a generative model tends to only copy the training data. However, this
cannot happen for the simulations described in this thesis as the experimental data is only
used to determine parameter ranges. The chance that the same CSDs are generated by
sampling parameters from these ranges is very low. Hence, the third metric is not crucial
for the evaluation. To compute α-Precision and β -Recall, the data are first embedded into
a lower dimensional hypersphere. Therefore, a neural network is trained on the first set of
experimental data. It is trained to minimize the loss

L = R2+ 1
νn

n
∑
i=1

max{0,∥φ(xi)−c∥2−R2}, (4.1)

where R is the radius of the hypersphere, c is the center, ν is a balancing factor, and n is the
number of data points. φ is the neural network that transforms the CSDs xi into the lower
dimensional hypersphere. This loss function is also used to train neural networks for
anomaly detection [47]. A framework for training neural networks accordingly is avail-
able on Github [48]. The architecture used for the embedding of CSDs is an adaptation
of the MNIST_LeNet implemented in [48]. The architecture is visualized in Figure 4.3. It
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4.3 Metrics for Generative Models

is selected because it was also applied in [47] for image data.

Input image: 
100x100x1

Conv2d (5x5 kernel+2 padding): 
100x100x8

BatchNorm2d:
100x100x8

MaxPool2d (2x2 kernel):
50x50x8

Leaky_relu

Conv2d (5x5 kernel+2 padding): 
50x50x4

MaxPool2d (2x2 kernel):
25x25x4

BatchNorm2d:
50x50x4

Leaky_relu

Linear: 
500

Flatten: 2500

Linear: 
50

Figure 4.3: Architecture of the neural network used to transform the CSDs into a lower
dimensional hypersphere

Both α-Precision and β -Recall are calculated as the mean of sample-wise classifiers. The
precision classifier verifies if the generated input sample exists in the α-support of the real
data, while the recall classifier checks if the real input sample exists in the β -support of
the generated data. The α-support refers to the support of the distribution of the α most
typical samples. For the calculation of α-Precision and β -Recall, the α- and β -supports
have to be estimated. For the real data, the estimated α-support is

Ŝα
r = B(c, r̂α), (4.2)

where r̂α is the α-quantile of ∥φ(xr,i)−c∥ for the real data xr,i and B(c,r) is a Euclidean
ball with center c and radius r. Thus, the precision classifier is

fP(φ(xg,i)) = 1{φ(xg,i) ∈ B(c, r̂α)}. (4.3)

In Figure 4.4a, the α-support of the real data are visualized in blue. For this example,
half of the simulated data, displayed in orange, are inside the α-support region, while the
other half, which is shown in a paler color, is outside the support region. That means the
α-Precision would have a value of 0.5 for this example. In general, α-Precision is the
fraction of synthetic samples that resemble the most typical fraction of real samples [46].
For the recall classifier, the Euclidean ball B(cg, r̂β ) with cg = 1

m∑
m
i=1 φ(xg,i) and r̂β =

Qβ (∥φ(xg, i)−cg∥), with Qβ indicating the β -quantile, has to be calculated. However, as
φ is trained on the real data, it does not necessarily transform the support of the generated
data into a hypersphere. Therefore B(cg, r̂β ) cannot directly be used as an estimate for the
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β -support of the generated data. Instead, the recall classifier is constructed as

fR(φ(xr,i)) = 1{φ(xβ

g, j) ∈ B(φ(xr,i),NNDk(φ(xr,i)))}, (4.4)

where φ(xβ

g, j) is the sample in B(cg, r̂β ) nearest to φ(xr,i) and NNDk(φ(xr,i))) is the
distance between φ(xr,i) and its k-nearest neighbor in the real dataset. In Figure 4.4b,
B(cg, r̂β ) is visualized and an example of a 1-nearest-neighbor region including a gener-
ated data point is shown. In contrast to the α-Precision, the β -Recall indicates the fraction
of real samples covered by the most typical fraction of synthetic samples [46].

𝑐𝑅2

 𝑟𝛼

(a) α-Precision

= real data point

𝑐𝑔  𝑟𝛽

𝑁𝑁𝐷1

= generated
data point

𝜙(𝑥𝑟,𝑖)

𝜙(𝑥𝑔,𝑗
𝛽
)

(b) β -Recall

Figure 4.4: Visualization of the items needed to calculate the α-Precision and β -Recall.
(a) shows the hypersphere itself and the α-support for α = 0.9. (b) shows the
β -support for β = 0.9 and the 1-nearest-neighbor region for a real data point
φ(xr,i), containing a simulated data point φ(xg, j) from the β -support.

4.3.1 Preprocessing

As the CSDs have different value ranges, the neural network φ might try to transform
the data only considering the values while the structure of the images is not taken into
account. To prevent this, the images are all transformed beforehand to mean zero and
variance one.
Moreover, the applied voltages are not included in the training procedure and the data
have to be resized to the same shape. As most CSDs have a size of 100x100 pixels, this
size is used.
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4.3 Metrics for Generative Models

4.3.2 Hyperparameter Selection

Hyperparameters that have to be selected to compute the α-Precision and β -Recall met-
rics are:

• The balancing factor ν in the loss function used for the training of φ . It balances
the compactness of the hypersphere, measured by R2, with the distance of the outer
samples to the border of the hypersphere. Here, ν is set to 0.01 as proposed in [46].

• The optimizer. Here, the Adam optimizer is used, which is well known for its effec-
tiveness in solving minimization problems, especially in the deep learning context.

• The learning rate for the training. The default value of 0.001 set in the deep SVDD
project [48] is used. This value is small enough to prevent the network from missing
the minimum and thus underfitting. On the other hand, the risk for overfitting is
lowered by adjusting the number of epochs.

• The batch size for the training. As there are not many CSDs available, this is set to
the size of the whole dataset. Otherwise, the network would not be able to capture
all the different structures in one batch and thus tend to underfit. In general, a
smaller batch size leads to less precision in the approximation of the gradient. This
causes the network to need more epochs to get to the minimum or to not reach it at
all.

• The parameter for the weight decay regularizer used in [48]. The default value of
1 ⋅10−6 is sufficiently small to prevent underfitting.

• The number of epochs for the the training of φ . This value was set to 200 because
then the loss on the evaluation set is the lowest still similar to the training loss. This
is important because otherwise, the hypersphere of the evaluation data would be
significantly larger than the hypersphere of the optimization data, which is a sign of
overfitting. Moreover, similar images have a low or high distance to the center of
the hypersphere for the optimization and evaluation set (see Figures 4.5 and 4.6).
In terms of outlier detection, the high scores given in Figures 4.5 and 4.6 indicate
that the CSD is more likely to be an outlier.

• The parameter α of the α-Precision. It is set to 95% assuming that 5% of the exper-
imental dataset are outliers. This is most likely an overestimation of the percentage
of outliers because most CSD structures which could be regarded as outliers have
already been removed from the dataset. However, as a lower α could only lead to
a lower value for the α-Precision, the results should give a good insight into how
similar experimental and simulated data are.

• The parameter k for the calculation of the k-nearest-neighbor distances in the β -
Recall metric. This is set to 2, as for an outlier in the real dataset the 1-nearest-
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4 Generation and Evaluation of Simulated Data

neighbor region could be completely outside the sphere of typical real datasets.
Hence, the β -Recall metric would punish the simulation for not including outliers.
Taking the value of 2 minimizes the risk that the β -Recall is only low because some
outliers of the real dataset are not captured.

• The parameter β of the β -Recall. It is set to 100% because the simulated dataset
should not contain any outliers.
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(a) CSDs in the center of the hypersphere
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Figure 4.5: Examples of CSDs for different hypersphere regions. (a) CSDs with a small
score and (b) CSDs with a high score for CSDexp1. The titles of each diagram
contain the score calculated by ∥φ(xi)−c∥2 −R2 with R2 = 2.184. The trans-
formation φ is calculated excluding any gate voltages. Colorbars are excluded
for better clarity.
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(a) CSDs in the center of the hypersphere
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Figure 4.6: Examples of CSDs for different hypersphere regions. (a) CSDs with a small
score and (b) CSDs with a high score for CSDexp2. The titles of each diagram
contain the score calculated by ∥φ(xi)−c∥2 −R2 with R2 = 2.184. The trans-
formation φ is calculated excluding any gate voltages. Colorbars are excluded
for better clarity.

4.4 Other Evaluation Methods

In addition to the metrics explained in Section 4.3, some other evaluation methods are
used to compare the experimental and simulated CSDs. This includes the comparison of
the power spectral density, the distribution of the overall estimated noise strength, and the
value distribution, as well as the visual comparison of the CSDs.

4.4.1 Power Spectral Density

The PSD provides information about the distribution of the power of the signal onto dif-
ferent frequencies. As explained in Section 3.3, this also provides information about the
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types of noise present in the CSDs.
To be able to check if the PSD between the experimental and the simulated data match,
the means of the PSDs are calculated and compared. However, this does not capture
the variation of the PSD values per frequency, so the minimum and maximum for every
frequency are calculated and included in the comparison.

4.4.2 Distribution of Estimated Noise Strength

While the PSD gives information about the composition of the noise, the distribution of
the overall noise strength for different images is of interest to compare measured and sim-
ulated data.
To calculate the noise strength, the estimator of Chen et al. [49] is used. The author
of [16] concluded that this noise estimator is best suited in terms of a low dispersion of
the estimated noise strengths. To calculate the noise estimation, the implementation by
Zongsheng Yue [50] is applied.
The noise estimator decomposes the CSD into patches and performs an eigenvalue de-
composition of them. The lowest eigenvalues belong to noise and thus, can be used to
determine the noise level in the image. This idea is also used for the principle component
analysis (PCA). To determine the threshold that assigns the eigenvalues to a set belonging
to the signal or one belonging to the noise, the mean and median of the lowest eigenval-
ues are calculated. As long as the mean differs from the median, the highest eigenvalue is
removed. If the mean and median are sufficiently similar, the square root of the mean is
used as an approximation for the standard deviation of the noise in the image.

4.4.3 Value Distribution

A further aspect of the comparison is the distribution of the values inside the CSDs. This is
done visually with the help of a histogram and numerically utilizing the Kullback-Leibler
[51] and Jensen-Shannon [52] divergence. Both are used to measure the statistical simi-
larity of two distributions. However, the Kullback-Leibler divergence is not symmetric,
which has to be kept in mind for the comparison of results, and sensitive to smaller dif-
ferences between the distributions. Moreover, the Jensen-Shannon divergence is bound
between 0 and ln(2), whereas the Kullback-Leibler divergence does not have an upper
bound. The implementation of these metrics is taken from [53].
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4.4.4 Visual Inspection

For the visual inspection, the shape of the honeycomb pattern in the simulated data have
to be compared with the experimental data. As the main task for this thesis was the
simulation of the noise, it also has to be checked against the noise in the experimental
data. Moreover, the sharpness of the edges and the sensor response have to be taken into
account.

4.5 First comparison and model refinement

For the first assessment, 149 simulated CSDs are generated in the way described in Sec-
tion 4.1 and compared with the 149 experimental CSDs of CSDexp1. The number of
simulated CSDs should match the number of experimental CSDs in the dataset to ensure
that a different diversity is not only caused by a different amount of data in the simu-
lated dataset. The results for the different evaluation methods are given in the following
sections, including their discussion and adjustments for the optimized simulated dataset
CSDsim2.

4.5.1 α-Precision and β -Recall

The value for the α-Precision with α = 0.95 is about 0.986 while the value for the β -
Recall with β = 1 is only about 0.128. This means that the fidelity of the simulated data
are excellent while their diversity is still low. As the β -Recall is calculated with the help
of the 2-nearest-neighbor distance, it does not only compare the support of the simulated
and real distribution but also includes a comparison of the distribution of simulated and
real data. If the probability distribution of the experimental data is localized in the mid-
dle of the hypersphere, while the simulated data is uniformly distributed, there will be
many small nearest-neighbor regions in the middle of the hypersphere that do not include
a simulated CSD. On the other hand, if the distributions are similar, it is more likely that
there will also be a simulated data point in the nearest-neighbor regions of the experi-
mental data points. A similar distribution itself is not as important as a similar support
of the distribution because the distribution depends highly on the measurements which
were executed by the experimenter. However, the decisions of the experimenter are not
necessarily representative for the tuning procedure. In order to check, independently of
the distribution, whether the support of simulated and experimental data match, a new
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simulated dataset with 1000 samples is created. In this case, the β -Recall is much higher
and has a value of about 0.611 which means that the support of simulated and real data is
more similar than indicated by the first calculated value.
To better understand experimental effects are not yet covered, the experimental CSDs
without a simulated CSD in the k-nearest-neighbor region are analyzed. These include
some CSDs that contain only noise without a visible sensor response (see Figure 4.7a).
Moreover, CSDs with less than 100x100 pixels (see Figure 4.7b) and images with a clear
honeycomb structure and nearly no noise (see Figure 4.7c) are included. Furthermore,
there also are CSDs with very long bursts (see Figure 4.7d) which could not be identified
by only looking at the sensor scans for the determination of the RTN parameters. The
rest of the CSDs have either some changes in the honeycomb structure or a single dot
instead of a DQD is visible, which could for example come from a too high tunnel cou-
pling between the two dots (see Figures 4.7e to 4.7i). For some further CSDs, it is not
directly explainable why they are not represented in the simulated dataset. Thus, further
investigations are necessary because of the complexity of the data.
To optimize the simulation, the identified second type of RTN (see Figure 4.7d) is added,
whose parameters are determined directly in the CSDs. As there is no jump back visible,
a length of 10000 pixels is assumed, which corresponds to the size of a CSD. For the
normalized height of the second RTN, a mean of 0.14208 and a standard deviation of
0.44248 are determined from 4 out of 149 CSDs. To get a similar rate, this type of noise
is included in 3% of the simulated CSDs. As the scaling factor of the sensing response is
not available in this case the height is instead normalized by the difference between the
minimum and maximum of the CSD.
To also simulate CSDs with almost no noise, the lower bound for white and pink noise is
adjusted downwards to 1 ⋅10−10. For the simulation of images which seem to contain only
noise, the starting point on the sensor curve should be further away from the peak. Thus,
for 10% of the CSDs, it is chosen from the interval [µ0−4 ⋅ γ,µ0−3 ⋅ γ]. This region has
a shallow slope in comparison to the region [µ0−2 ⋅ γ,µ0−1 ⋅ γ] which is usually chosen
(see Figure 4.8). The region between the orange and green one, it not used for starting
values of the CSD because the experimental CSDs either show a region without visible
sensor response or a region near the peak, which often also shows the peak itself in the
image.
The creation of more images with single dots and highly coupled dots, which are also
missing in the simulated dataset, is not further investigated because the main aspect of
this thesis is the simulation of distortions.
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Figure 4.7: Examples of experimental CSDs which are not represented in the simulated
CSDs. The transformation φ is calculated excluding any gate voltages. Col-
orbars are excluded for better clarity.

4.5.2 Power Spectral Density

The PSD mean for the experimental and simulated CSDs differs in its level while the
shape is similar. Moreover, the variation of the PSD values is much higher for experi-
mentalthan for simulated CSDs (see Figure 4.9). The PSDs in Figure 4.9 are calculated
with the help of Welch’s method [42]. One parameter of the function is the number of
samples per segment (nperseg), which is set to 256 for CSDs containing more than 256
samples (see Figure 4.9a). Additionally, the diagram in Figure 4.9c was calculated with
100 samples per segment for all CSDs. The simulated CSDs all have a size of 100x100
pixels, so all simulated CSDs have been used to calculate the diagrams in Figure 4.9b and
Figure 4.9d.
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Figure 4.8: Lorentzian where the region [µ0−4 ⋅ γ,µ0−3 ⋅ γ] (orange) and [µ0−2 ⋅ γ,µ0−
1 ⋅ γ] (green) is marked. In the orange region, the sensor is less sensitive than
in the green one, leading to a lower value range of the CSD as well as more
visible noise and less visible signal.
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(a) Experimental CSDs, nperseg = 256
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(b) Simulated CSDs, nperseg = 256
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(c) Experimental CSDs, nperseg = 100
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(d) Simulated CSDs, nperseg = 100

Figure 4.9: Mean and variation of the PSDs for (a, c) the experimental CSDs and (b, d)
simulated CSDs. In (a,b) 256 samples per segment and in (c,d) 100 samples
per segment are used for the computation.

The reason for the different levels of the mean PSD for the experimental and the simulated
CSDs is the different value range. For the simulated CSDs the range is up to 1.8 while
it is below 0.2 for the experimental CSDs. That means the scaling factor of the sensor
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response determined in Section 3.2 is too high. To get lower scaling factors, the scaling
factor is included in the error function used to determine the sensor response parameters.
It is multiplied by the weight 0.001 to ensure that the main goal of minimizing the stan-
dard deviation of the gradient in non-edge regions is still met. Using this approach, the
parameter ranges in Table 4.1 are determined.

Table 4.1: Parameter ranges of the sensor response determined from 16 experimental
CSDs and their corresponding sensor scans

parameter minimum maximum

So f f -0.42275 -0.0838
µ0 -0.12168 -0.03824
a 0.02245 0.19204
γ 0.0009636 0.0029509

αgate,1 0.02805 0.15093
αgate,2 0.03788 0.19491
αdot,1 -0.0007994 -0.0000961
αdot,2 -0.0005214 -0.0000630

However, this does not lead to a larger variation of the PSDs of the simulated CSDs.
In Section 4.5.1, it was already mentioned that very noisy CSDs without visible sensor
responses are not represented in the simulated dataset. These are also the cause for the
low minimum of the PSD. The inclusion of CSDs starting at a sensor region with a low
slope should also lead to a larger variation of the PSDs.

4.5.3 Distribution of Estimated Noise Strength

The distributions of the estimated noise strength for experimental and simulated data dif-
fer strongly (see Figure 4.10). For the simulated data higher noise strengths are estimated.
That means that the chosen range for σwhite and σpink is probably too high.
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(c) More detailed histogram

Figure 4.10: (a) boxplot and (b,c) histogram of the estimated noise strengths in the exper-
imental and simulated data. In (c), a smaller region with low values is shown
to enable a more detailed look at the distribution of the noise strength in the
experimental data.

4.5.4 Value Distribution

Looking at the values in the different experimental CSDs shows that there are two CSDs
with very high values in comparison to the other CSDs. As this happens only for these
two CSDs the reason for the high values seems to be a different transformation of the
original values. The comparison of the histograms in Figure 4.11 shows that the values
of the simulated datatsets have a much larger range. That is because the scaling factor for
the sensor response is too high as mentioned in Section 4.5.2. The penalization of high
scaling factors in the error function should solve this.
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Figure 4.11: Histograms of the values in the (a) experimental CSDs in comparison to (b)
the values in the simulated ones

The visual inspection of the distribution of the different values also reveals that values
around zero appear very often in the experimental CSDs. This is mostly observed in
CSDs which are very noisy and do not contain any structure. A first assumption in Sec-
tion 4.5.1 has been that these CSDs come from the parts far away from the sensor peaks
and thus do not show any structure because of the shallow slope. However, in this case,
the values of these CSDs would be much smaller. One possible reason for the values
around zero could be a transformation of the image values after the measurement. How-
ever, the real reason for these values is insufficiently known and thus cannot be simulated
yet.
The values for the Kullback-Leibler and Jensen-Shannon divergence are 2.427 and 0.213.
As there is no upper bound for the Kullback-Leibler divergence, its value can only be in-
terpreted by comparing it with the value on CSDsim2. For the Jensen-Shannon divergence,
the value is in the lower half of its value range. However, it is far away from zero.

4.5.5 Visual Inspection

Looking at the structure of the honeycombs, the inter-dot transitions in the simulated
data seem to be longer than the inter-dot transitions in the experimental CSDs (see Fig-
ure 4.13). The id_lengths determined in Section 3.1, also show that by far most of the
lengths have lower values (see Figure 4.12).
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Figure 4.12: Boxplot of the id_length values determined in Section 3.1. Most deter-
mined id_lengths are in the lower region of the whole range.

To avoid often large id_lengths, this parameter is not chosen from a uniform distribu-
tion but a normal distribution with an expectation of 0.004 and a standard deviation of
0.0015. These values are calculated from the previously determined parameters. Values
below 0.00261 or above 0.00987 are discarded.
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Figure 4.13: Typical examples for the sizes of the inter-dot length for (a) an experimental
CSD in comparison to (b) a simulated one

Moreover, most of the experimental CSDs have inter-dot transitions which are as sharp as
the lead transitions (see Figure 4.13a). That means that in most CSDs the tunnel coupling
is very low, thus, the minimum for id_width should be zero.
When comparing the lead transitions of the simulated and experimental CSDs, the sim-
ulated ones are sharper (see Figure 4.14). The reason for a slightly blurred edge in the
experimental CSD is that, tunneling events often affect two neighbored pixel values dur-
ing the measuring procedure. To reproduce this, a Gaussian blur is applied to the CSDs
after adding the dot jumps and sensor response and before adding any noise. The param-
eter sigma of the Gaussian filter is set to 0.75 because only the neighboring pixels are
influenced.
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Figure 4.14: Typical examples for the sharpness of the lead transitions for (a) an experi-
mental CSD in comparison to (b) a simulated one

Furthermore, many simulated CSDs seem to contain low noise. However, this might re-
sult from their higher value range. Thus, the noise is less visible. In Section 4.5.3, it was
already shown that the absolute strength of the noise is higher than in the real data. The
compensation for this is the adaptation of the scaling factor for the sensor response and a
lower range for the strength of white and pink noise.
In many simulated CSDs with RTN, the bursts are more clearly visible than in the exper-
imental CSDs (see Figure 4.15). Moreover, the stripes in the experimental CSDs, most
probably originating from pink noise and RTN, are not visible in the regions near the
sensor peak. This is the case because pink noise and RTN seem to influence the sensor
response not directly but via the electrochemical potential at the SD. Thus, they also have
to be applied to the electrochemical potential of the SD in the simulation. The parameters
for the strength of both noise types have to be adjusted by dividing them through the slope
of the sensor response which is approximated by a

γ
.
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Figure 4.15: Typical examples of RTN for (a) an experimental CSD in comparison to (b)
a simulated one. In addition, pink noise is visible in the experimental CSD.
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4.5.6 Summary of the Changes to the Simulation

Table 4.2 summarizes the adapted parameters for the optimized simulated dataset CSDsim2.
In addition to the changes of the parameters, new parameters for the Gaussian blur as well

Table 4.2: Summary of the adapted parameters for CSDsim2

parameter new value(s)
senor response So f f [-0.42275, -0.0838]

a [0.02245, 0.19204]
αgate,1 [0.02805, 0.15093]
αgate,2 [0.03788, 0.19491]
αdot,1 [-0.0007994, -0.0000961]
αdot,2 [-0.0005214, -0.0000630]

white noise σwhite [1 ⋅10−10, 0.003]
pink noise σpink [1 ⋅10−10, 0.005]

Gaussian blur σblur 0.75
RTN after sensor expected length 10000

expected height 0.14208
standard deviation of height 0.44248

as the second type of RTN, called RTN after sensor, are included. Furthermore, the sam-
pling of the id_length is changed to sampling from a normal distribution and the original
RTN and pink noise are applied to the SD potential. The maximal strength of white noise
is lower than for pink noise because it is applied after the sensor. As pink noise is applied
before the sensor, it is only present in the given strength at the steepest slopes of the sensor
response. In 10% of the time, the offset µo f f is chosen from the interval [µ0−4γ,µ0−3γ]
to simulate CSDs with a smaller slope of the sensor response.

4.6 Evaluation of the Optimized Simulated Dataset

The optimized simulated dataset CSDsim2 is evaluated using the evaluation dataset CSDexp2

consisting of 154 experimental CSDs that were not used in the model refinement stage to
avoid positive biasing.
In the following, the same evaluation methods are used as in Section 4.5.
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4.6.1 α-Precision and β -Recall

The transformation of the CSDs is carried out with the help of the same network φ as used
during the model refinement stage. The training on the new experimental dataset CSDexp2

may generate different transformations. Thus, the results would not be comparable with
the results of the first simulated dataset CSDsim1 anymore.
α-Precision and β -Recall are first calculated on the optimization dataset CSDexp1 and the
optimized simulated dataset CSDsim2 to check if a quality gain was achieved. However,
these results generally have a lower significance because the optimization set has already
been used to identify the problems of CSDsim1. For reliable results, the α-Precision and
β -Recall also have to be calculated for CSDexp2.
The comparison of CSDexp1 with CSDsim2 leads to an α-Precision of about 0.928 and a
β -Recall of about 0.308. For CSDexp2, the values are similar.
In the following, the α-Precision and β -Recall of CSDexp1 and CSDsim1 are compared
with the results for CSDexp2 and CSDsim2. The α-Precision calculated on CSDexp2 and
CSDsim2 is about 0.942 which is about 0.04 less than the value reached in the model
refinement stage. However, the value for the β -Recall, indicating the diversity of the
simulated dataset, increased by about 0.2 to a value of 0.331. This is a relative increase
of about 160%. Although this is a large increase only about one-third of the experimental
dataset is covered by the simulated CSDs. On the other hand, the fidelity of the simulated
dataset decreased but is still at a very high level. This is important if machine learning
algorithms should be trained with simulated CSDs.
However, for a large simulated dataset with 1000 samples, the β -Recall value does not
increase in comparison to the result in the refinement stage. In this case, a value of
about 0.557 is calculated for the comparison with CSDexp1 and a value of about 0.61
for CSDexp2. This means that the model refinement did not improve the support of the
simulated data. However, the distribution of CSDsim2 is more similar to the distribution of
the experimental data than the distribution of CSDsim1.
Usually, simulated CSDs leading to a lower α-Precision are very noisy images, indicating
that their noise strength might be too high.
The simulated CSDs leading to a low β -Recall are still similar to those presented in
Figure 4.7. Merely, the images with long bursts are now all represented in the simulated
dataset. CSDs with structural differences or a size smaller than 100x100 pixels are still
not included. Moreover, images with only noise or very low noise are not present in
CSDsim2 according to the recall classifier.
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4.6.2 Power Spectral Density

With the adjusted scaling factor for the sensor response, the PSD mean is similar for
the experimental and simulated CSDs (see Figure 4.16). However, the variation of the
PSD is still much smaller for the simulated CSDs. The reason for low PSD values in the
experimental data are images with a value range of lower than 0.001. The lowest value
range for the simulated CSDs is about 0.008.
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(b) Simulated CSDs, nperseg = 256
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(c) Experimental CSDs, nperseg = 100
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(d) Simulated CSDs, nperseg = 100

Figure 4.16: Mean and variation of the PSDs for the (a, c) experimental CSDs and (b, d)
simulated CSDs. In (a,b) 256 samples per segment and in (c,d) 100 samples
per segment are used for the computation.

In case of neglecting CSDs with value ranges smaller than 0.001 or with a size different
from 100x100 pixel, the variation of the PSDs is more similar (see Figure 4.17). In
total, 24 of the 154 CSDs in the evaluation dataset CSDexp2 are excluded for the diagram
in Figure 4.17. In this case, the only difference left is that the lowest values for the
experimental CSDs seem to originate from some CSDs containing only white noise, as
they are constant over all frequencies. For the simulated data, there is either still some
structure from the sensor response or pink noise present in the CSDs with the lowest PSD
values.
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Figure 4.17: Mean and variation of the PSDs for the (a) experimental CSDs and (b) simu-
lated CSDs. For the computation, 256 samples per segment are used. For the
experimental data, those CSDs are omitted that have a value range smaller
than 0.001 or a size different from 100x100 pixels.

4.6.3 Distribution of Estimated Noise Strength

The adjustment of the upper bound for the intensity of white and pink noise leads to a
more similar distribution of the estimated noise strength in the experimental and simulated
dataset (see Figure 4.18).
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Figure 4.18: (a) boxplot and (b) histogram of the estimated noise strengths in the experi-
mental and simulated data

One remaining difference is that the simulated dataset shows a non-skewed nearly uni-
form distribution, whereas the experimental dataset has a right-skewed distribution. This
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implies that a normally distributed noise strength could be more realistic. However, a
more detailed analysis of the experimental CSDs with noise estimations between 0.0006
and 0.001 is required to find out if the peak in the histogram only arises from CSDs that
are measured in short succession, thus, showing similar noise characteristics.

4.6.4 Value Distribution

The adaption of the simulation parameters reduces the difference between the value range
of the experimental and simulated CSDs (see Figure 4.19). Also, the similarity of the
distribution of values is improved, as the values for the Kullback-Leibler and Jensen-
Shannon divergence are only 0.66, respectively, 0.14. But values around 0 are still more
common for the experimental images. Mostly, these values derive from the CSDs that
lead to the small PSD values as described in Section 4.6.2.
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Figure 4.19: Histograms of the values in (a) the experimental CSDs and (b) the values in
the simulated ones

4.6.5 Visual Inspection

In the simulated dataset, some CSDs contain very high pink noise in comparison to the
experimental CSDs (see Figure 4.20).
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(b) Simulated CSD

Figure 4.20: Typical examples of (a) an experimental and (b) a simulated CSD with strong
pink noise.

The same also applies to the RTN after the sensor. While a maximum of one jump is
visible in experimental CSDs, there are more jumps in the simulated CSDs (see Fig-
ure 4.21).
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(a) Experimental CSD
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Figure 4.21: Typical example of (a) an experimental and (b) a simulated CSD with RTN
after the sensor

The comparison of the sensor response shows that the sensor peak in the experimental
CSDs often seems to be wider or αgate is larger in the simulated CSDs (see Figure 4.22).
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Figure 4.22: Typical example of a sensor peak in the (a) experimental and (b) simulated
data

Notably, RTN and pink noise applied before the sensor look more realistic (see Fig-
ure 4.23). Furthermore, the sharpness of the edges is more realistic, but the experimental
dataset also contains images with an even lower edge sharpness. Additionally, the length
of the inter-dot transitions is now closer to the length visible in the experimental CSDs.
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Figure 4.23: Typical examples for RTN and pink noise before the sensor for (a) an exper-
imental CSD in comparison to (b) a simulated one
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5 Discussion

The following chapter summarizes and interprets the presented results concerning the aim
of the thesis to simulate realistic distortions in CSDs. This also includes a discussion of
the strengths and weaknesses of the evaluation methods.

5.1 Strengths and Weaknesses of the Evaluation
Methods

Different evaluation methods with different strengths and weaknesses are used to evalu-
ate if CSDs with realistic distortions are generated. The α-Precision and β -Recall metrics
have the advantage, that they determine an interpretable number which is easily compa-
rable. Moreover, this also enables further analysis of the reasons for low precision and
recall as the metrics work sample-wise. On the other hand, there is a risk that the under-
lying neural network φ learned unsuitable transformations for the comparison. To lower
this risk, the evaluation set CSDexp2 is used to compare if similar CSDs of CSDexp1 and
CSDexp2 are transformed similarly (see Figures 4.5 and 4.6). Regarding the β -Recall met-
ric, the choice of k for the k-nearest-neighbor region highly influences the resulting value.
This is a problem if the density of the experimental CSDs varies inside the hypersphere
while the density of the simulated data is homogeneous. In this case, there might be
no simulated CSD in the k-nearest-neighbor-region but the overall support of both dis-
tributions might still be similar. Thus, low recall values indicate that the distribution of
simulated and experimental data differs but not necessarily that only a small percentage
of the experimental distribution is covered by the simulated data. To get a better insight
into this problem, larger simulated datasets with 1000 samples have been created, and the
β -Recall metric was recalculated. Another disadvantage of this evaluation method is the
standardization of the image values before the transformation which makes it impossible
to check if the value distribution of the experimental and simulated dataset matches.
To overcome this problem, this aspect was analyzed separately. The Kullback-Leibler and
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Jensen-Shannon divergence are commonly used for the comparison of distributions. They
enable an easy comparison if the value distribution of the CSDsim1 or the adapted CSDsim2

is more similar to the one of the experimental datasets. However, the interpretation of
this value is difficult, especially for the Kullback-Leibler divergence as there is no upper
bound for it. For this reason, the histograms of all values in the datasets are analyzed as
well.
Not only is the value distribution important for the comparison, but also the frequency
distribution which can be compared with the help of the PSD. The advantage of this eval-
uation method is that, up to a certain degree, the composition of the noise present in the
CSDs can be analyzed. This aspect is especially important for the aim of this thesis as the
focus lies on the simulation of realistic noise. A drawback of this approach is that as the
PSD was already used for the parameter determination, it might not give more informa-
tion than already used. Furthermore, it does not provide information about the distribution
of the total noise strength in the images. This aspect is covered by the calculation of the
estimated overall noise strength and the comparison of its distribution. The used noise es-
timator estimates the overall noise which looks like white noise. This includes also parts
of the pink noise but not of the RTN and dot jumps. However, as these types of noise are
not that common, it still provides a good insight into the distribution of the noise strength
in the CSDs.
In the end, the combination of the different evaluation methods enables a differentiated as-
sessment of the quality of the simulated dataset. To ensure that no difference between the
simulated and experimental data is missed, the dataset is additionally analyzed visually.

5.2 Summary of the Evaluation Results

A comparison of the first simulated dataset CSDsim1, the optimized simulated dataset
CSDsim2, and the experimental datasets CSDexp1,2 shows, that there are still some differ-
ences between the simulated CSDs and the experimental CSDs. However, by optimizing
some of the parameters and adapting the simulation model, the results of the final simu-
lation are improved. The quality was measured using the α-Precision and β -Recall with
α = 0.95 and β = 1, which indicate the fidelity and diversity of the simulated dataset. The
α-Precision has a high value above 0.94 for both CSDsim1 and CSDsim2, while the diver-
sity is not as high with a β -Recall value of below 1

3 for both datasets. This results from
the fact that datasets with only noise or with very low noise are not represented in both
simulated datasets. This could be the case because the simulated noise differs from the
experimental noise or because the simulated datasets still show too much of the sensor
response. For the experimental data with low noise, it might be possible that the hon-
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eycomb structures differ from the simulated honeycomb structures. This could be the
case because different characteristics of the experimental structures are not yet included
in the simulation. But another reason could also be that the determined parameters are
not precise enough. However, the β -Recall is still increased by 0.2 (160%) for CSDsim2.
This means that especially the distribution of the simulated and experimental data is more
similar for the optimized simulation model. For the large simulated datasets with 1000
samples, the value for the first and the optimized simulated dataset does not differ much.
So, the support of the simulated data could not be increased. The other evaluation meth-
ods have shown a stronger effect when applying the adapted simulation model.
While the PSD and the value distribution indicate, that for the CSDs in CSDsim1 the value
range has been too large, the range fits the experimental image ranges for CSDsim2. This
improvement is achieved by the punishment of large scaling factors during the fitting of
the sensor response parameters. The comparison between the mean PSD of the simulated
and experimental data also shows a similar frequency distribution. This indicates, that the
noise model is working fine.
However, the lowest experimental PSD values are lower than the simulated ones (see Fig-
ure 4.16) due to the very low value ranges in the experimental CSDs. These value ranges
are from similar CSDs like the ones which also lead to a small β -Recall for CSDsim2.
CSDs with such a small value range result from a badly tuned SD or a postprocessing of
the image values. In both cases, it is questionable if the inclusion of these types of CSDs
into the simulation model is useful as the SD should be tuned correctly before the mea-
surement of a CSD. Moreover, the postprocessing steps have to be known to include them
in the simulation. If the images with a very low range and a size different than 100x100
pixels are not considered, the variation of the CSDs is more similar (see Figure 4.17).
However, the lowest PSD values probably originate from pure white noise which also
indicates that the sensor is tuned to a non-sensitive region. Nevertheless, the inclusion of
these datasets does not require an adaption of the simulation model but only a change of
the offset µo f f for the sensor response. To create these CSDs, the initial position of the
sensor should be further away from the peak of the sensor response.
Additionally, the distribution of the noise strength in the simulated and experimental data
is significantly improved by choosing the noise strength for white and pink noise from a
smaller range.
However, there are still some differences between the simulated and the experimental data
opening the possibility to differentiate the simulated CSDs from the experimental ones.
This includes the structure of the honeycombs which is often distorted in ways which are
not included in the simulation yet (see Figures 4.7e to 4.7h) because not all of them are
understood by now. Moreover, the sharpness of the edges seems to vary less in the sim-
ulated dataset CSDsim2. Additionally, on average, the noise is stronger in the simulated
CSDs (see Section 4.6.3). Finally, for the RTN after sensor, the length parameter seems
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to be too low because in some images several jumps are visible (see Figure 4.21) whereas
never more than one is visible in the experimental data.
Another issue is the width of the sensor response peak which seems to be too low in some
simulated CSDs (see Figure 4.22). This indicates that either the peak is too narrow or
αgate is too large in relation to the width of the sensor response. The relation between
αgate and γ is already limited for the simulation, but could be further reduced for a higher
percentage of simulated CSDs.

5.3 Interpretation of the Evaluation Results

The aim of this thesis is the simulation of realistic distortions in DQD CSDs to enable
the development and testing of algorithms for the automated tuning of DQDs including
machine learning algorithms.
Different evaluation methods have been used to evaluate if this aim is reached. In conclu-
sion, they show that the simulated CSDs are a subgroup of the experimental CSDs. That
means that they can be used to test algorithms and also train machine learning algorithms.
However, at the moment, also experimental data have to be included in this process be-
cause there are even more possible distortions than described in Section 2.5. To enable
the testing and training with only simulated CSDs, the simulation model first has to be
extended.
In this context, it also has to be checked if the training including simulated CSDs leads
to a lower generalization error for a machine learning model or if training with only ex-
perimental data works better. If the training with simulated data leads to an overfitting
to special characteristics of the simulated data, the application on experimental data will
not be successful. On one hand, the previous work of Darulova et al. [20] showed that
training with only experimental data still worked better than using only simulated data. A
combination of synthetic and experimental data showed a similar performance as the us-
age of only experimental data. Even, the addition of common noise types did not improve
the performance much. On the other hand, the work of Ziegler et al. [24] showed a better
performance for the classification of the occupation regime when noise is included in the
simulated data.
Even if the training with simulated data does not directly improve the performance, it can
help to understand better which aspects of the experimental data are important for the al-
gorithm. This knowledge can then be used to improve the simulation, which could again
lead to an improvement of the tuning algorithm.
Especially for deep neural networks, a better performance can be expected with the in-
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clusion of simulated data, because the available experimental dataset does not contain
enough samples for a proper training. Another problem with the experimental data is that
the different honeycomb structures are not as diverse as in the simulated data because
the same voltage configuration is measured several times leading to only minor changes
between the datasets.
The generated simulated data represent typical CSDs which are measured during the tun-
ing procedure. However, there are still some problems that could not be solved yet. This
includes the simulation of virtual gates, which lead to nearly horizontal and vertical lead
transitions and also remove the capacitive coupling effects between the swept gates and
the sensor. Moreover, parameters for the generation of single dot line patterns should be
determined to also include those single dots that are caused by a barrier too weak to sepa-
rate the two dots of the DQD. Furthermore, other structural distortions of the honeycomb
pattern resulting from moving dots or parasitic dots (see Figure 4.2) should be further
analyzed for implementation in the simulation. However, depending on the type of algo-
rithm to be tested, these types of data are not required. In general, the simulated dataset
should be adapted to the application as not every type of distortion and honeycomb shape
will be present for every step of the tuning algorithm.
However, CSD data are not sufficiently understood for their realistic simulation. There-
fore, also a perpetual adaptation of the simulation model is important. That means, new
knowledge gained during the algorithm development for the DQD tuning should be di-
rectly included in the simulation model to improve the simulation.
One reason for a slow knowledge gain concerning the understanding of CSDs is the
amount of data available because each research group records its data without making
them publicly available. This also makes the development of simulated CSDs harder. As
a contribution to overcome this problem, the software developed in this thesis is planned
to be published. Moreover, also some first methods for parameter determination and eval-
uation of the generated CSDs have been presented. This could help other research groups
with the simulation of their measured CSDs.
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This thesis deals with the characterization and simulation of distortions in CSDs with the
aim of using them for the development and testing of algorithms for the automated tuning
of DQDs. First, the used simulation model generates an undistorted CSD containing the
occupation per dot. Then, distortions are added to the generated clean data. This has the
advantage that a ground truth for each data point is directly available, and enables the
generation of large labeled datasets.
Moreover, the suggested model has the advantage that the strength of each type of noise
can be controlled. This is beneficial for the comparison of the strengths and weaknesses
of different algorithms used for the tuning.
For the simulation of the undistorted CSDs, the capacitive model [1] and the Hubbard
model [2] were compared. It was concluded that non of them enables the creation of
the characteristics visible in the experimental CSDs recorded with the experimental setup
described in Section 2.2. The capacitive model does not include the inter-dot tunnel cou-
pling and the Hubbard model does not have enough parameters to enable the fitting of
all honeycomb characteristics. This manifested itself in the fact that the honeycombs are
too small if the other characteristics match. Thus, a new simulation method developed by
Fabian Hader from the ZEA-2 was used.
For the simulation of distortions, the most commonly occurring distortions were identi-
fied. These are the cross-coupling between the sensor and double dot plunger gates, white
noise, pink noise, RTN, and dot jumps. For each type of distortion parameter ranges for
the simulation were determined.
A first simulated dataset CSDsim1 has been generated and evaluated using the α-Precision
and β -Recall which are originally used for the evaluation of generative models. In addi-
tion, the PSD, the distribution of estimated noise levels, and the value distribution were
compared between simulated data and experimental data. For a qualitative evaluation of
the simulated data, a visual comparison regarding the honeycomb structure, edge sharp-
ness, visibility of the sensor response, and characteristics of the distortions was carried
out. These investigations have shown that CSDsim1 differs from the experimental data
especially in terms of the value range, the visibility of pink noise and random telegraph
noise, the strength of the noise, and the edge sharpness.
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For the generation of the optimized simulated dataset CSDsim2, the range for the sampling
of the sensor dot scaling factor was lowered by punishing high scaling factors during the
determination of the sensor response parameters. Moreover, the simulation of pink noise
and RTN was applied before the sensor response so that the height of the jumps is depen-
dent on the slope of the sensor response. As the estimated noise strengths were higher
in the simulated data, the strength of white and pink noise was reduced. In addition, a
smoothing of the lead transitions was applied because the edges in the first simulated
dataset were too sharp.
CSDsim2 has been evaluated with the same methods as CSDsim1. It was found that the sim-
ilarity of the distribution, the PSD and the value range of the generated samples and the
experimental data increased. Moreover, the visually analyzed characteristics were more
similar.
In summary, the simulated data already emulate the real data quite well, making a step
forward to a greater publicly available knowledge base for CSDs.
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In the future, other effects which are not yet covered should be included in the simulation.
These comprise the simulation of virtual gates, parasitic dots, and moving dots, which
lead to curved lead transitions. Moreover, the reason for the irregular sensor response
(see Figure 4.2d) and J-shaped lines (see Figure 4.2e) should be analyzed and included in
the simulation process. Another important aspect is the inclusion of the structural differ-
ences (see Figures 4.7e to 4.7h) and of single dots resulting from an insufficient barrier
between the dots.
Until now, the voltage range of the experimental CSDs has not been taken into account for
the determination of the parameters. However, at least for the structure of the honeycombs
the swept range has an effect as the inter-dot tunnel coupling increases for larger voltages
if no compensation via the other gate voltages is performed in between. Additionally, a
correlation between the applied voltages and the resulting noise should be examined.
The simulation of the electron occupation tuning requires the generation of honeycomb
structures with a varying parameter for the inter-dot tunnel coupling. After measuring
one small CSD, the plunger gate voltages are adjusted to get to the (1, 1) electron region.
Then, a new CSD is measured with the new voltages. This existing relationship between
the small CSDs should later on also be represented in the simulated data.
Experimental data from quantum dots implemented in GaAs/AlGaAs heterostructures
were used for the determination of the simulation parameters. However, the Quantum
Technology Group of the RWTH is going to focus on Si/SiGe technology in the future.
Moreover, there are also other promising technologies used for DQDs. Therefore, the
simulation model, respectively, the parameters of the current model should be adapted to
provide simulated CSDs for this realization of DQDs.
Finally, the impact of using simulated data for the development of automated tuning algo-
rithms including machine learning algorithms should be examined. This could also lead
to a symbiosis of continuously improving simulation and tuning algorithm, as the tuning
algorithm will show the weaknesses of the simulation and the simulated data at the same
time help to find improvements in the tuning algorithm.
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