000010212 001__ 10212
000010212 005__ 20240708132725.0
000010212 0247_ $$2DOI$$a10.1016/j.surfcoat.2010.02.026
000010212 0247_ $$2WOS$$aWOS:000277736100023
000010212 037__ $$aPreJuSER-10212
000010212 041__ $$aeng
000010212 082__ $$a620
000010212 084__ $$2WoS$$aMaterials Science, Coatings & Films
000010212 084__ $$2WoS$$aPhysics, Applied
000010212 1001_ $$0P:(DE-HGF)0$$aDrexler, J.M.$$b0
000010212 245__ $$aThermal-gradient testing of thermal barrier coatings under simultaneous attack by molten glassy deposits and its mitigation
000010212 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2010
000010212 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000010212 3367_ $$2DataCite$$aOutput Types/Journal article
000010212 3367_ $$00$$2EndNote$$aJournal Article
000010212 3367_ $$2BibTeX$$aARTICLE
000010212 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000010212 3367_ $$2DRIVER$$aarticle
000010212 440_0 $$05670$$aSurface and Coatings Technology$$v204$$x0257-8972$$y16
000010212 500__ $$aThe authors thank Mr. L Flower (Haynes), Dr. R. Kowalik (NavAir), Dr. B. Nagaraj (GE Aviation), and Dr. X. Ma (lnframat Corp.) for their help with this project. The authors also thank Profs. A. Evans (UCSB) and J. Hutchinson (Harvard) for fruitful discussions and their help with the E-H model. The suggestions by Prof. C. Levi (UCSB) on producing a feasible CMAS source are gratefully acknowledged. The authors also thank Dr. D. Mack (Julich) for discussion and support during the thermal-cycling experiments, and Mrs. N. Adels (Julich) for performing the burner rig tests. The research at the Ohio State University was supported by a grant from the U.S. Office of Naval Research (award no. N00014-08-1-0458) monitored by Dr. D. Shifler. Additional support was provided by the U.S. Department of Energy (award no. DE-NT0006552).
000010212 520__ $$aDegradation of thermal barrier coatings (TBCs) in gas-turbine engines by molten calcium-magnesium-aluminosilicate (CMAS) glassy deposits is becoming a pressing issue, as engines are required to operate under increasingly harsh conditions. While new approaches for mitigating CMAS attack of TBCs are starting to emerge, there is a need for appropriate tests for evaluating the efficacy of those approaches. To that end, we present here a new thermal-cycling test for the evaluation of TBC performance, where a thermal gradient is applied across the TBC. with simultaneous injection of CMAS. The conditions simulated in this new test are closer to actual conditions in an engine, as compared to the conventional furnace test without thermal gradient. This new test is applied to a TBC with a new composition designed for mitigating CMAS attack, where the mitigation mechanisms are observed to be similar to those found in the conventional furnace test. However, based on a previously established mechanics model it is shown here that thermal-gradient cyclic testing is essential for evaluating thermomechanical performance of TBCs under attack by CMAS, and that the use of just the conventional furnace test can lead to the underestimation of the TBC performance. (C) 2010 Elsevier B.V. All rights reserved.
000010212 536__ $$0G:(DE-Juel1)FUEK402$$2G:(DE-HGF)$$aRationelle Energieumwandlung$$cP12$$x0
000010212 588__ $$aDataset connected to Web of Science
000010212 65320 $$2Author$$aThermal barrier coating
000010212 65320 $$2Author$$aThermal-gradient cyclic testing
000010212 65320 $$2Author$$aGlass deposits
000010212 65320 $$2Author$$aFailure mechanics
000010212 650_7 $$2WoSType$$aJ
000010212 7001_ $$0P:(DE-HGF)0$$aAygun, A.$$b1
000010212 7001_ $$0P:(DE-HGF)0$$aLi, D.$$b2
000010212 7001_ $$0P:(DE-Juel1)129670$$aVaßen, R.$$b3$$uFZJ
000010212 7001_ $$0P:(DE-Juel1)VDB84038$$aSteinke, T.$$b4$$uFZJ
000010212 7001_ $$0P:(DE-HGF)0$$aPadture, N.P.$$b5
000010212 773__ $$0PERI:(DE-600)1502240-7$$a10.1016/j.surfcoat.2010.02.026$$gVol. 204$$q204$$tSurface and coatings technology$$v204$$x0257-8972$$y2010
000010212 8567_ $$uhttp://dx.doi.org/10.1016/j.surfcoat.2010.02.026
000010212 909CO $$ooai:juser.fz-juelich.de:10212$$pVDB
000010212 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000010212 9141_ $$y2010
000010212 9131_ $$0G:(DE-Juel1)FUEK402$$aDE-HGF$$bEnergie$$kP12$$lRationelle Energieumwandlung$$vRationelle Energieumwandlung$$x0
000010212 9132_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000010212 9201_ $$0I:(DE-Juel1)VDB809$$d30.09.2010$$gIEF$$kIEF-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000010212 970__ $$aVDB:(DE-Juel1)120452
000010212 980__ $$aVDB
000010212 980__ $$aConvertedRecord
000010212 980__ $$ajournal
000010212 980__ $$aI:(DE-Juel1)IEK-1-20101013
000010212 980__ $$aUNRESTRICTED
000010212 981__ $$aI:(DE-Juel1)IMD-2-20101013
000010212 981__ $$aI:(DE-Juel1)IEK-1-20101013