001021217 001__ 1021217
001021217 005__ 20240709082111.0
001021217 0247_ $$2doi$$a10.1016/j.cej.2023.146740
001021217 0247_ $$2ISSN$$a1385-8947
001021217 0247_ $$2ISSN$$a0300-9467
001021217 0247_ $$2ISSN$$a1873-3212
001021217 0247_ $$2ISSN$$a1873-5541
001021217 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-00658
001021217 0247_ $$2WOS$$aWOS:001102719100001
001021217 037__ $$aFZJ-2024-00658
001021217 1001_ $$0P:(DE-Juel1)198716$$aIm, Eunmi$$b0
001021217 245__ $$aUnveiling the electrochemical characteristics of acetonitrile-catholyte-based Na-CO2 battery
001021217 260__ $$aAmsterdam$$bElsevier$$c2023
001021217 3367_ $$2DRIVER$$aarticle
001021217 3367_ $$2DataCite$$aOutput Types/Journal article
001021217 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1706508843_18124
001021217 3367_ $$2BibTeX$$aARTICLE
001021217 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001021217 3367_ $$00$$2EndNote$$aJournal Article
001021217 520__ $$aThe development of metal-CO2 batteries has attracted intense attention because of their unique electrochemical reaction for utilization of CO2 gas. However, unlike the alkali metal-based O2 batteries, a limited number of combinations of aprotic electrolytes have been employed for Li(Na)–CO2 batteries due to the sluggish reaction for the formation of the Li(Na)2CO3 discharge product. Here, we demonstrate an acetonitrile (MeCN)-based catholyte for use in a hybrid cell type Na-CO2 battery. The presence of a solid ceramic separator in our hybrid cell allows the stable operation of the MeCN catholyte-based Na-CO2 battery, resulting in improved electrochemical characteristics such as low overpotential, high energy density, and long cycle stability compared to the conventional TEGDME-based electrolyte. In particular, results of molecular dynamics simulations suggest that the improved performance is mainly due to the enhanced Na+ diffusion in the electrolyte. The calculated barrier for Na+ diffusion in MeCN is approximately four times lower than that in TEGDME. Thus, this work provides a promising electrolyte combination and reveals the mechanism for the improved performance of the MeCN-based electrolyte used in the hybrid cell structure, promoting the development of Na-CO2 batteries as practical secondary energy storage devices.
001021217 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001021217 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001021217 7001_ $$0P:(DE-HGF)0$$aMun, Jinhong$$b1
001021217 7001_ $$0P:(DE-HGF)0$$aPourasad, Saeed$$b2
001021217 7001_ $$0P:(DE-HGF)0$$aBaek, Kyungeun$$b3
001021217 7001_ $$0P:(DE-HGF)0$$aHa, Jee Ho$$b4
001021217 7001_ $$0P:(DE-Juel1)162243$$aDurmus, Yasin Emre$$b5
001021217 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b6
001021217 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b7
001021217 7001_ $$0P:(DE-HGF)0$$aLee, Geunsik$$b8$$eCorresponding author
001021217 7001_ $$0P:(DE-HGF)0$$aMoon, Geon Dae$$b9$$eCorresponding author
001021217 7001_ $$0P:(DE-HGF)0$$aKang, Seok Ju$$b10$$eCorresponding author
001021217 773__ $$0PERI:(DE-600)2012137-4$$a10.1016/j.cej.2023.146740$$gVol. 476, p. 146740 -$$p146740 -$$tThe chemical engineering journal$$v476$$x1385-8947$$y2023
001021217 8564_ $$uhttps://juser.fz-juelich.de/record/1021217/files/Manuscript_final%20version%20without%20logo.pdf$$yPublished on 2023-10-21. Available in OpenAccess from 2025-10-21.
001021217 8564_ $$uhttps://juser.fz-juelich.de/record/1021217/files/Manuscript_final%20version%20without%20logo.gif?subformat=icon$$xicon$$yPublished on 2023-10-21. Available in OpenAccess from 2025-10-21.
001021217 8564_ $$uhttps://juser.fz-juelich.de/record/1021217/files/Manuscript_final%20version%20without%20logo.jpg?subformat=icon-1440$$xicon-1440$$yPublished on 2023-10-21. Available in OpenAccess from 2025-10-21.
001021217 8564_ $$uhttps://juser.fz-juelich.de/record/1021217/files/Manuscript_final%20version%20without%20logo.jpg?subformat=icon-180$$xicon-180$$yPublished on 2023-10-21. Available in OpenAccess from 2025-10-21.
001021217 8564_ $$uhttps://juser.fz-juelich.de/record/1021217/files/Manuscript_final%20version%20without%20logo.jpg?subformat=icon-640$$xicon-640$$yPublished on 2023-10-21. Available in OpenAccess from 2025-10-21.
001021217 909CO $$ooai:juser.fz-juelich.de:1021217$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001021217 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)198716$$aForschungszentrum Jülich$$b0$$kFZJ
001021217 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162243$$aForschungszentrum Jülich$$b5$$kFZJ
001021217 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b6$$kFZJ
001021217 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b7$$kFZJ
001021217 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b7$$kRWTH
001021217 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001021217 9141_ $$y2023
001021217 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
001021217 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
001021217 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-23
001021217 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-23
001021217 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-23
001021217 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001021217 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bCHEM ENG J : 2022$$d2023-08-23
001021217 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM ENG J : 2022$$d2023-08-23
001021217 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
001021217 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001021217 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
001021217 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-23
001021217 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-23
001021217 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
001021217 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-23$$wger
001021217 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
001021217 920__ $$lyes
001021217 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
001021217 9801_ $$aFullTexts
001021217 980__ $$ajournal
001021217 980__ $$aVDB
001021217 980__ $$aUNRESTRICTED
001021217 980__ $$aI:(DE-Juel1)IEK-9-20110218
001021217 981__ $$aI:(DE-Juel1)IET-1-20110218