Hauptseite > Publikationsdatenbank > Unveiling the electrochemical characteristics of acetonitrile-catholyte-based Na-CO2 battery > print |
001 | 1021217 | ||
005 | 20240709082111.0 | ||
024 | 7 | _ | |a 10.1016/j.cej.2023.146740 |2 doi |
024 | 7 | _ | |a 1385-8947 |2 ISSN |
024 | 7 | _ | |a 0300-9467 |2 ISSN |
024 | 7 | _ | |a 1873-3212 |2 ISSN |
024 | 7 | _ | |a 1873-5541 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2024-00658 |2 datacite_doi |
024 | 7 | _ | |a WOS:001102719100001 |2 WOS |
037 | _ | _ | |a FZJ-2024-00658 |
100 | 1 | _ | |a Im, Eunmi |0 P:(DE-Juel1)198716 |b 0 |
245 | _ | _ | |a Unveiling the electrochemical characteristics of acetonitrile-catholyte-based Na-CO2 battery |
260 | _ | _ | |a Amsterdam |c 2023 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1706508843_18124 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The development of metal-CO2 batteries has attracted intense attention because of their unique electrochemical reaction for utilization of CO2 gas. However, unlike the alkali metal-based O2 batteries, a limited number of combinations of aprotic electrolytes have been employed for Li(Na)–CO2 batteries due to the sluggish reaction for the formation of the Li(Na)2CO3 discharge product. Here, we demonstrate an acetonitrile (MeCN)-based catholyte for use in a hybrid cell type Na-CO2 battery. The presence of a solid ceramic separator in our hybrid cell allows the stable operation of the MeCN catholyte-based Na-CO2 battery, resulting in improved electrochemical characteristics such as low overpotential, high energy density, and long cycle stability compared to the conventional TEGDME-based electrolyte. In particular, results of molecular dynamics simulations suggest that the improved performance is mainly due to the enhanced Na+ diffusion in the electrolyte. The calculated barrier for Na+ diffusion in MeCN is approximately four times lower than that in TEGDME. Thus, this work provides a promising electrolyte combination and reveals the mechanism for the improved performance of the MeCN-based electrolyte used in the hybrid cell structure, promoting the development of Na-CO2 batteries as practical secondary energy storage devices. |
536 | _ | _ | |a 1223 - Batteries in Application (POF4-122) |0 G:(DE-HGF)POF4-1223 |c POF4-122 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Mun, Jinhong |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Pourasad, Saeed |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Baek, Kyungeun |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Ha, Jee Ho |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Durmus, Yasin Emre |0 P:(DE-Juel1)162243 |b 5 |
700 | 1 | _ | |a Tempel, Hermann |0 P:(DE-Juel1)161208 |b 6 |
700 | 1 | _ | |a Eichel, Rüdiger-A. |0 P:(DE-Juel1)156123 |b 7 |
700 | 1 | _ | |a Lee, Geunsik |0 P:(DE-HGF)0 |b 8 |e Corresponding author |
700 | 1 | _ | |a Moon, Geon Dae |0 P:(DE-HGF)0 |b 9 |e Corresponding author |
700 | 1 | _ | |a Kang, Seok Ju |0 P:(DE-HGF)0 |b 10 |e Corresponding author |
773 | _ | _ | |a 10.1016/j.cej.2023.146740 |g Vol. 476, p. 146740 - |0 PERI:(DE-600)2012137-4 |p 146740 - |t The chemical engineering journal |v 476 |y 2023 |x 1385-8947 |
856 | 4 | _ | |y Published on 2023-10-21. Available in OpenAccess from 2025-10-21. |u https://juser.fz-juelich.de/record/1021217/files/Manuscript_final%20version%20without%20logo.pdf |
856 | 4 | _ | |y Published on 2023-10-21. Available in OpenAccess from 2025-10-21. |x icon |u https://juser.fz-juelich.de/record/1021217/files/Manuscript_final%20version%20without%20logo.gif?subformat=icon |
856 | 4 | _ | |y Published on 2023-10-21. Available in OpenAccess from 2025-10-21. |x icon-1440 |u https://juser.fz-juelich.de/record/1021217/files/Manuscript_final%20version%20without%20logo.jpg?subformat=icon-1440 |
856 | 4 | _ | |y Published on 2023-10-21. Available in OpenAccess from 2025-10-21. |x icon-180 |u https://juser.fz-juelich.de/record/1021217/files/Manuscript_final%20version%20without%20logo.jpg?subformat=icon-180 |
856 | 4 | _ | |y Published on 2023-10-21. Available in OpenAccess from 2025-10-21. |x icon-640 |u https://juser.fz-juelich.de/record/1021217/files/Manuscript_final%20version%20without%20logo.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1021217 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)198716 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)162243 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)161208 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)156123 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 7 |6 P:(DE-Juel1)156123 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1223 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-08-23 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b CHEM ENG J : 2022 |d 2023-08-23 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CHEM ENG J : 2022 |d 2023-08-23 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-23 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-23 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-23 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2023-08-23 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-23 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-9-20110218 |k IEK-9 |l Grundlagen der Elektrochemie |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-9-20110218 |
981 | _ | _ | |a I:(DE-Juel1)IET-1-20110218 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|