001     1021217
005     20240709082111.0
024 7 _ |a 10.1016/j.cej.2023.146740
|2 doi
024 7 _ |a 1385-8947
|2 ISSN
024 7 _ |a 0300-9467
|2 ISSN
024 7 _ |a 1873-3212
|2 ISSN
024 7 _ |a 1873-5541
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-00658
|2 datacite_doi
024 7 _ |a WOS:001102719100001
|2 WOS
037 _ _ |a FZJ-2024-00658
100 1 _ |a Im, Eunmi
|0 P:(DE-Juel1)198716
|b 0
245 _ _ |a Unveiling the electrochemical characteristics of acetonitrile-catholyte-based Na-CO2 battery
260 _ _ |a Amsterdam
|c 2023
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1706508843_18124
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The development of metal-CO2 batteries has attracted intense attention because of their unique electrochemical reaction for utilization of CO2 gas. However, unlike the alkali metal-based O2 batteries, a limited number of combinations of aprotic electrolytes have been employed for Li(Na)–CO2 batteries due to the sluggish reaction for the formation of the Li(Na)2CO3 discharge product. Here, we demonstrate an acetonitrile (MeCN)-based catholyte for use in a hybrid cell type Na-CO2 battery. The presence of a solid ceramic separator in our hybrid cell allows the stable operation of the MeCN catholyte-based Na-CO2 battery, resulting in improved electrochemical characteristics such as low overpotential, high energy density, and long cycle stability compared to the conventional TEGDME-based electrolyte. In particular, results of molecular dynamics simulations suggest that the improved performance is mainly due to the enhanced Na+ diffusion in the electrolyte. The calculated barrier for Na+ diffusion in MeCN is approximately four times lower than that in TEGDME. Thus, this work provides a promising electrolyte combination and reveals the mechanism for the improved performance of the MeCN-based electrolyte used in the hybrid cell structure, promoting the development of Na-CO2 batteries as practical secondary energy storage devices.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Mun, Jinhong
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Pourasad, Saeed
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Baek, Kyungeun
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Ha, Jee Ho
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Durmus, Yasin Emre
|0 P:(DE-Juel1)162243
|b 5
700 1 _ |a Tempel, Hermann
|0 P:(DE-Juel1)161208
|b 6
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 7
700 1 _ |a Lee, Geunsik
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
700 1 _ |a Moon, Geon Dae
|0 P:(DE-HGF)0
|b 9
|e Corresponding author
700 1 _ |a Kang, Seok Ju
|0 P:(DE-HGF)0
|b 10
|e Corresponding author
773 _ _ |a 10.1016/j.cej.2023.146740
|g Vol. 476, p. 146740 -
|0 PERI:(DE-600)2012137-4
|p 146740 -
|t The chemical engineering journal
|v 476
|y 2023
|x 1385-8947
856 4 _ |y Published on 2023-10-21. Available in OpenAccess from 2025-10-21.
|u https://juser.fz-juelich.de/record/1021217/files/Manuscript_final%20version%20without%20logo.pdf
856 4 _ |y Published on 2023-10-21. Available in OpenAccess from 2025-10-21.
|x icon
|u https://juser.fz-juelich.de/record/1021217/files/Manuscript_final%20version%20without%20logo.gif?subformat=icon
856 4 _ |y Published on 2023-10-21. Available in OpenAccess from 2025-10-21.
|x icon-1440
|u https://juser.fz-juelich.de/record/1021217/files/Manuscript_final%20version%20without%20logo.jpg?subformat=icon-1440
856 4 _ |y Published on 2023-10-21. Available in OpenAccess from 2025-10-21.
|x icon-180
|u https://juser.fz-juelich.de/record/1021217/files/Manuscript_final%20version%20without%20logo.jpg?subformat=icon-180
856 4 _ |y Published on 2023-10-21. Available in OpenAccess from 2025-10-21.
|x icon-640
|u https://juser.fz-juelich.de/record/1021217/files/Manuscript_final%20version%20without%20logo.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1021217
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)198716
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)162243
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)161208
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 7
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-23
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b CHEM ENG J : 2022
|d 2023-08-23
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM ENG J : 2022
|d 2023-08-23
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-23
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-23
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-23
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-23
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-23
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21