001     1021223
005     20250203103234.0
024 7 _ |a 10.34734/FZJ-2024-00664
|2 datacite_doi
037 _ _ |a FZJ-2024-00664
041 _ _ |a English
100 1 _ |a Hizzani, Mohammad
|0 P:(DE-Juel1)190961
|b 0
|e Corresponding author
111 2 _ |a International conference on neuromorphic, natural and physical computing
|g NNPC2023
|c Hannover
|d 2023-10-25 - 2023-10-27
|w Germany
245 _ _ |a Mapping NP-Complete Problems to Physics-Based QUBO Solvers: Quantitative Comparison and Understanding
260 _ _ |c 2023
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1710238127_2317
|2 PUB:(DE-HGF)
|x Other
502 _ _ |c RWTH Aachen
520 _ _ |a NP-complete problems like 3-SAT can be mapped and solved by emerging physics-based hardware such as Ising systems, quantum annealers, or Hopfield neural networks. Such systems natively handle quadratic unconstrained binary optimization (QUBO) problems, while higher order and constrained problem classes can be transformed into these simpler QUBO formulations. However, there are often multiple possible mappings for such transformations, with substantial performance differences. Here, we compared several different mappings from 3-SAT to a QUBO solver and quantified the differences in resources required (additional auxiliary variables) and final time-to-solution. Notably, while the global minimum of the 3-SAT problem matches the global minimum of the QUBO problem, we find stark differences in other portions of the landscape in terms of gradient directions. We attempt to explain the observed differences between the mappings utilizing a simplified under-sampling metric and showed good predictive capability. Our chosen platform was a Hopfield neural network, with different annealing techniques and neuron update rules compared.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
536 _ _ |a 5312 - Devices and Applications (POF4-531)
|0 G:(DE-HGF)POF4-5312
|c POF4-531
|f POF IV
|x 1
536 _ _ |a BMBF 16ME0398K - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0398K)
|0 G:(DE-82)BMBF-16ME0398K
|c BMBF-16ME0398K
|x 2
650 2 7 |a Others
|0 V:(DE-MLZ)SciArea-250
|2 V:(DE-HGF)
|x 0
650 1 7 |a Others
|0 V:(DE-MLZ)GC-2003-2016
|2 V:(DE-HGF)
|x 0
700 1 _ |a Dobrynin, Dmitri
|0 P:(DE-Juel1)188725
|b 1
700 1 _ |a Van Vaerenbergh, Thomas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hutchinson, George
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Strukov, Dmitri
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Strachan, John Paul
|0 P:(DE-Juel1)188145
|b 5
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1021223/files/Hizzani_NNPC2023.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1021223/files/Hizzani_NNPC2023.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1021223/files/Hizzani_NNPC2023.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1021223/files/Hizzani_NNPC2023.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1021223/files/Hizzani_NNPC2023.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1021223
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190961
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)188725
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)188145
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-531
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Functionality by Information-Guided Design: From Molecular Concepts to Materials
|9 G:(DE-HGF)POF4-5312
|x 1
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-14-20210412
|k PGI-14
|l Neuromorphic Compute Nodes
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-14-20210412
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21