Home > Publications database > Mapping NP-Complete Problems to Physics-Based QUBO Solvers: Quantitative Comparison and Understanding > print |
001 | 1021223 | ||
005 | 20250203103234.0 | ||
024 | 7 | _ | |a 10.34734/FZJ-2024-00664 |2 datacite_doi |
037 | _ | _ | |a FZJ-2024-00664 |
041 | _ | _ | |a English |
100 | 1 | _ | |a Hizzani, Mohammad |0 P:(DE-Juel1)190961 |b 0 |e Corresponding author |
111 | 2 | _ | |a International conference on neuromorphic, natural and physical computing |g NNPC2023 |c Hannover |d 2023-10-25 - 2023-10-27 |w Germany |
245 | _ | _ | |a Mapping NP-Complete Problems to Physics-Based QUBO Solvers: Quantitative Comparison and Understanding |
260 | _ | _ | |c 2023 |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a CONFERENCE_POSTER |2 ORCID |
336 | 7 | _ | |a Output Types/Conference Poster |2 DataCite |
336 | 7 | _ | |a Poster |b poster |m poster |0 PUB:(DE-HGF)24 |s 1710238127_2317 |2 PUB:(DE-HGF) |x Other |
502 | _ | _ | |c RWTH Aachen |
520 | _ | _ | |a NP-complete problems like 3-SAT can be mapped and solved by emerging physics-based hardware such as Ising systems, quantum annealers, or Hopfield neural networks. Such systems natively handle quadratic unconstrained binary optimization (QUBO) problems, while higher order and constrained problem classes can be transformed into these simpler QUBO formulations. However, there are often multiple possible mappings for such transformations, with substantial performance differences. Here, we compared several different mappings from 3-SAT to a QUBO solver and quantified the differences in resources required (additional auxiliary variables) and final time-to-solution. Notably, while the global minimum of the 3-SAT problem matches the global minimum of the QUBO problem, we find stark differences in other portions of the landscape in terms of gradient directions. We attempt to explain the observed differences between the mappings utilizing a simplified under-sampling metric and showed good predictive capability. Our chosen platform was a Hopfield neural network, with different annealing techniques and neuron update rules compared. |
536 | _ | _ | |a 5234 - Emerging NC Architectures (POF4-523) |0 G:(DE-HGF)POF4-5234 |c POF4-523 |f POF IV |x 0 |
536 | _ | _ | |a 5312 - Devices and Applications (POF4-531) |0 G:(DE-HGF)POF4-5312 |c POF4-531 |f POF IV |x 1 |
536 | _ | _ | |a BMBF 16ME0398K - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0398K) |0 G:(DE-82)BMBF-16ME0398K |c BMBF-16ME0398K |x 2 |
650 | 2 | 7 | |a Others |0 V:(DE-MLZ)SciArea-250 |2 V:(DE-HGF) |x 0 |
650 | 1 | 7 | |a Others |0 V:(DE-MLZ)GC-2003-2016 |2 V:(DE-HGF) |x 0 |
700 | 1 | _ | |a Dobrynin, Dmitri |0 P:(DE-Juel1)188725 |b 1 |
700 | 1 | _ | |a Van Vaerenbergh, Thomas |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Hutchinson, George |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Strukov, Dmitri |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Strachan, John Paul |0 P:(DE-Juel1)188145 |b 5 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1021223/files/Hizzani_NNPC2023.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1021223/files/Hizzani_NNPC2023.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1021223/files/Hizzani_NNPC2023.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1021223/files/Hizzani_NNPC2023.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1021223/files/Hizzani_NNPC2023.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1021223 |p openaire |p open_access |p VDB |p driver |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)190961 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)188725 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)188145 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5234 |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Materials Systems Engineering |1 G:(DE-HGF)POF4-530 |0 G:(DE-HGF)POF4-531 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Functionality by Information-Guided Design: From Molecular Concepts to Materials |9 G:(DE-HGF)POF4-5312 |x 1 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-14-20210412 |k PGI-14 |l Neuromorphic Compute Nodes |x 0 |
980 | _ | _ | |a poster |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-14-20210412 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|