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INTRODUCTION

NP-complete problems like 3-SAT can be
mapped and solved by emerging physics-based
hardware such as Ising systems, quantum an-
nealers, or Hopfield neural networks. Such sys-
tems natively handle quadratic unconstrained
binary optimization (QUBO) problems, while
higher order and constrained problem classes
can be transformed into these simpler QUBO
formulations. However, there are often multi-
ple possible mappings for such transformations,
with substantial performance differences. Here,
we compared several different mappings from 3-
SAT to a QUBO solver and quantified the differ-
ences in resources required (additional auxiliary
variables) and final time-to-solution. Notably,
while the global minimum of the 3-SAT prob-
lem matches the global minimum of the QUBO
problem, we find stark differences in other por-
tions of the landscape in terms of gradient direc-
tions. We attempt to explain the observed dif-
ferences between the mappings utilizing a sim-
plified under-sampling metric and showed good
predictive capability. Our chosen platform was a
Hopfield neural network, with different anneal-
ing techniques and neuron update rules com-
pared.

CONCLUSION

Quadratization comes with many challenges,
which includes larger search space, more rugged
landscape, and not so faithful to the original
landscape. Yet, quadratization is needed when
mapped to physic-based solver such as Ising ma-
chines or neuromorphic solvers such as Hopfield
networks. We presented that not all mapping
are equals notwithstanding they all share the
same global minimum. Moreover, update rules
in the solver heuristics may produce different so-

lution qualities such as ability to find a solution
and time-to-solution (T'TS).
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DIFFERENT MAPPING

Mapping 3-SAT into a QUBO solver can be implemented with different methods, each differs in
dimension, energy landscape and time-to-solution. In this work we studied three different mappings,
two from the literature |1, 2| and the third we developed to reduce auxiliary variable resulted from [1].
Table. 1 presents the variation in dimensionality by these three mappings. Although, our mapping
aimed to reduced dimensionality and thence reduce TTS, we discovered that dimensionality of the
mapping cannot be a predictor for the solver performance. Some instances benefited from the huge
jump of dimensions resulted by [2|, while others favored |1| as a sweet point in number of dimensions.

Problem Size | [1| | |2] Ours
20 111 | 273 | [58-73]
50 268 | 654 | [178-206]
75 400 | 975 | [88-318)

Table 1: Original 3-SAT problem sizes and their corresponding sizes after using the described QUBO
mapping

REsSULTS HEADING 2

Many metrics were introduced in the literature tried to measure the hardness of a 3-SAT instance
such as [6]. We developed an under-sampling landscape analysis for the mappings and predicted
with 90% accuracy the relative performance.Our goal is to make it easier and faster to calculate the
metric than solving the problem.

We studied three different annealing techniques, two from literature. First is the classical Hopfield
Neural Network asynchronous update (3|, second is the digital annealer (DA) by the Fujitsu team
14]. Additionally, we simulated our own proposed stochastic group update (batch update) , wherein
neurons are randomly grouped at each step and perform a parallel update for the whole group. The
performance of each technique was studied quantitatively with inferior results by DA.
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Figure 1: Top: TTS between [1],|2]and ours on selected instances from SATLIB [5]. Bottom: Our metric
expected relative performance for [1| and |2| with 90% accuracy:.
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Figure 2: Top curve is the value of constructed objective function while bottom curve is number of satisfied
clauses (original objective function) during a run of simulated annealing (x axis shows steps) of problem size
50 with 218 clauses. Green circle highlights when prob. was sated but not a global optimum in QUBO.
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