001     1021228
005     20250203103455.0
024 7 _ |a 10.1145/3589737.3605966
|2 doi
037 _ _ |a FZJ-2024-00665
100 1 _ |a Yang, Ming-Jay
|0 P:(DE-Juel1)192385
|b 0
|e Corresponding author
111 2 _ |a ICONS '23: 2023 International Conference on Neuromorphic Systems
|c Santa Fe NM USA
|d 2023-08-01 - 2023-08-03
|w USA
245 _ _ |a State-Space Modeling and Tuning of Memristors for Neuromorphic Computing Applications
260 _ _ |c 2023
|b ACM New York, NY, USA
300 _ _ |a 1-8
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1710238159_2316
|2 PUB:(DE-HGF)
520 _ _ |a Analog memristive devices have the potential to merge computing and memory, support local learning, reach high densities, enable 3D stacking, and low energy consumption for neuromorphic computing applications. Yet, integration is challenged by the variability and complex nonlinear dynamics involved in the tuning of memristors, which is required in computing and memory applications. In this paper, we model the dynamic analog switching of memristive devices with an evolution-measurement state-space model. A physics-based compact model is extended to capture statistical distributions of the variability observed in memristors. Based on metal-oxide memristors and electronic measurement data, we applied Sequential-Monte Carlo (Particle Filter) techniques to infer underlying memristor model parameters. The result is validated by experimental data. Applying the calibrated statistical model, we propose an efficient adaptive pulse programming scheme, and performed a comparative analysis across widely applied write-and-verify techniques. We show improved programming control in the metrics of error, energy, and time in reaching target states.
536 _ _ |a 5233 - Memristive Materials and Devices (POF4-523)
|0 G:(DE-HGF)POF4-5233
|c POF4-523
|f POF IV
|x 0
536 _ _ |a BMBF 03ZU1106CB - NeuroSys: Algorithm-Hardware Co-Design (Projekt C) - B (BMBF-03ZU1106CB)
|0 G:(DE-Juel1)BMBF-03ZU1106CB
|c BMBF-03ZU1106CB
|x 1
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Paul Strachan, John
|0 P:(DE-Juel1)188145
|b 1
773 _ _ |a 10.1145/3589737.3605966
909 C O |o oai:juser.fz-juelich.de:1021228
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)192385
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)188145
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5233
|x 0
914 1 _ |y 2024
920 1 _ |0 I:(DE-Juel1)PGI-14-20210412
|k PGI-14
|l Neuromorphic Compute Nodes
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-14-20210412
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21