001021263 001__ 1021263
001021263 005__ 20240226075343.0
001021263 037__ $$aFZJ-2024-00699
001021263 041__ $$aEnglish
001021263 1001_ $$0P:(DE-Juel1)184562$$aWang, Cheng$$b0$$eCorresponding author$$ufzj
001021263 245__ $$aFirst-principles investigation of the topological phase transition in [Bi x Sb (1−x)] 2 [Te y Se (1−y)] 3$$f - 2023-12-11
001021263 260__ $$c2023
001021263 300__ $$a110 pages
001021263 3367_ $$2DataCite$$aOutput Types/Supervised Student Publication
001021263 3367_ $$02$$2EndNote$$aThesis
001021263 3367_ $$2BibTeX$$aMASTERSTHESIS
001021263 3367_ $$2DRIVER$$amasterThesis
001021263 3367_ $$0PUB:(DE-HGF)19$$2PUB:(DE-HGF)$$aMaster Thesis$$bmaster$$mmaster$$s1705903754_5088
001021263 3367_ $$2ORCID$$aSUPERVISED_STUDENT_PUBLICATION
001021263 502__ $$aMasterarbeit, RWTH Aachen, 2023$$bMasterarbeit$$cRWTH Aachen$$d2023
001021263 520__ $$aIn the rapidly evolving field of condensed matter physics, the study of topological insulators has opened new horizons for understanding of quantum states of matter. Among these, bismuth antimony telluride selenide (BSTS) materials stand out due to their unique electronic properties and potential applications in quantum computing. This thesis presents an in-depth analysis of BSTS materials, focusing on the pivotal role of spin-orbit coupling and compositional variations in driving topological phase transitions of the [Bi x Sb (1-x) ] 2 [Te y Se (1-y) ] 3 random alloy. Through sophisticated computational models and simulations, we dissect the band structures of BSTS materials to uncover the mechanisms that govern their topological behaviors. Our research not only advances the theoretical framework of topological insulators but also paves the way for practical applications in next-generation electronic devices, offering insights into the exploitation of Majorana fermions and the enhancement of superconducting properties. The findings of this thesis aim to contribute substantially to the field of quantum materials, highlighting the promise of BSTS materials in the quest for new quantum phenomena and technologies.
001021263 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001021263 909CO $$ooai:juser.fz-juelich.de:1021263$$pVDB
001021263 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184562$$aForschungszentrum Jülich$$b0$$kFZJ
001021263 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001021263 9141_ $$y2023
001021263 920__ $$lyes
001021263 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
001021263 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
001021263 980__ $$amaster
001021263 980__ $$aVDB
001021263 980__ $$aI:(DE-Juel1)IAS-1-20090406
001021263 980__ $$aI:(DE-Juel1)PGI-1-20110106
001021263 980__ $$aUNRESTRICTED