001     1021263
005     20240226075343.0
037 _ _ |a FZJ-2024-00699
041 _ _ |a English
100 1 _ |a Wang, Cheng
|0 P:(DE-Juel1)184562
|b 0
|e Corresponding author
|u fzj
245 _ _ |a First-principles investigation of the topological phase transition in [Bi x Sb (1−x)] 2 [Te y Se (1−y)] 3
|f - 2023-12-11
260 _ _ |c 2023
300 _ _ |a 110 pages
336 7 _ |a Output Types/Supervised Student Publication
|2 DataCite
336 7 _ |a Thesis
|0 2
|2 EndNote
336 7 _ |a MASTERSTHESIS
|2 BibTeX
336 7 _ |a masterThesis
|2 DRIVER
336 7 _ |a Master Thesis
|b master
|m master
|0 PUB:(DE-HGF)19
|s 1705903754_5088
|2 PUB:(DE-HGF)
336 7 _ |a SUPERVISED_STUDENT_PUBLICATION
|2 ORCID
502 _ _ |a Masterarbeit, RWTH Aachen, 2023
|c RWTH Aachen
|b Masterarbeit
|d 2023
520 _ _ |a In the rapidly evolving field of condensed matter physics, the study of topological insulators has opened new horizons for understanding of quantum states of matter. Among these, bismuth antimony telluride selenide (BSTS) materials stand out due to their unique electronic properties and potential applications in quantum computing. This thesis presents an in-depth analysis of BSTS materials, focusing on the pivotal role of spin-orbit coupling and compositional variations in driving topological phase transitions of the [Bi x Sb (1-x) ] 2 [Te y Se (1-y) ] 3 random alloy. Through sophisticated computational models and simulations, we dissect the band structures of BSTS materials to uncover the mechanisms that govern their topological behaviors. Our research not only advances the theoretical framework of topological insulators but also paves the way for practical applications in next-generation electronic devices, offering insights into the exploitation of Majorana fermions and the enhancement of superconducting properties. The findings of this thesis aim to contribute substantially to the field of quantum materials, highlighting the promise of BSTS materials in the quest for new quantum phenomena and technologies.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
909 C O |o oai:juser.fz-juelich.de:1021263
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)184562
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2023
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
980 _ _ |a master
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21