001021291 001__ 1021291
001021291 005__ 20240226075345.0
001021291 0247_ $$2doi$$a10.1038/s42003-023-04727-z
001021291 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-00721
001021291 0247_ $$2pmid$$a37012383
001021291 0247_ $$2WOS$$aWOS:000962868600002
001021291 037__ $$aFZJ-2024-00721
001021291 082__ $$a570
001021291 1001_ $$00000-0003-3371-4416$$aMaslov, Ivan$$b0
001021291 245__ $$aSub-millisecond conformational dynamics of the A2A adenosine receptor revealed by single-molecule FRET
001021291 260__ $$aLondon$$bSpringer Nature$$c2023
001021291 3367_ $$2DRIVER$$aarticle
001021291 3367_ $$2DataCite$$aOutput Types/Journal article
001021291 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1705907651_5088
001021291 3367_ $$2BibTeX$$aARTICLE
001021291 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001021291 3367_ $$00$$2EndNote$$aJournal Article
001021291 500__ $$aA.L., A.B., and V.B. are thankful for the Ministry of Science and Higher Education of theRussian Federation (agreement #075-03-2023-106, project FSMG-2020-0003). IMacknowledges the UHasselt Special Research Fund. Measurements of surface expressionand Gs-signaling were supported by the Russian Science Foundation (project no. 22-74-10036; https://rscf.ru/project/22-74-10036/). Computational simulations were supportedby the National Natural Science Foundation of China, grant #32250410316 (to PO). Weacknowledge the Advanced Optical Microscopy Centre at Hasselt University for supportwith microscopy experiments. Microscopy was made possible by the Research Foundation Flanders (FWO, projects G0B4915, G0B9922N, and G0H3716N).
001021291 520__ $$aThe complex pharmacology of G-protein-coupled receptors (GPCRs) is defined by their multi-state conformational dynamics. Single-molecule Förster Resonance Energy Transfer (smFRET) is well suited to quantify dynamics for individual protein molecules; however, its application to GPCRs is challenging. Therefore, smFRET has been limited to studies of inter-receptor interactions in cellular membranes and receptors in detergent environments. Here, we performed smFRET experiments on functionally active human A2A adenosine receptor (A2AAR) molecules embedded in freely diffusing lipid nanodiscs to study their intramolecular conformational dynamics. We propose a dynamic model of A2AAR activation that involves a slow (>2 ms) exchange between the active-like and inactive-like conformations in both apo and antagonist-bound A2AAR, explaining the receptor’s constitutive activity. For the agonist-bound A2AAR, we detected faster (390 ± 80 µs) ligand efficacy-dependent dynamics. Our work establishes a general smFRET platform for GPCR investigations that can potentially be used for drug screening and/or mechanism-of-action studies.
001021291 536__ $$0G:(DE-HGF)POF4-5244$$a5244 - Information Processing in Neuronal Networks (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001021291 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001021291 7001_ $$0P:(DE-Juel1)170083$$aVolkov, Oleksandr$$b1
001021291 7001_ $$00000-0002-2117-2130$$aKhorn, Polina$$b2
001021291 7001_ $$00000-0003-4078-4762$$aOrekhov, Philipp$$b3
001021291 7001_ $$0P:(DE-HGF)0$$aGusach, Anastasiia$$b4
001021291 7001_ $$0P:(DE-HGF)0$$aKuzmichev, Pavel$$b5
001021291 7001_ $$0P:(DE-HGF)0$$aGerasimov, Andrey$$b6
001021291 7001_ $$00000-0003-2697-456X$$aLuginina, Aleksandra$$b7
001021291 7001_ $$00000-0002-2493-2668$$aCoucke, Quinten$$b8
001021291 7001_ $$0P:(DE-HGF)0$$aBogorodskiy, Andrey$$b9
001021291 7001_ $$0P:(DE-Juel1)131964$$aGordeliy, Valentin$$b10
001021291 7001_ $$00000-0002-9236-4762$$aWanninger, Simon$$b11
001021291 7001_ $$00000-0003-3671-3072$$aBarth, Anders$$b12
001021291 7001_ $$0P:(DE-HGF)0$$aMishin, Alexey$$b13
001021291 7001_ $$0P:(DE-HGF)0$$aHofkens, Johan$$b14
001021291 7001_ $$00000-0002-5265-3914$$aCherezov, Vadim$$b15
001021291 7001_ $$0P:(DE-Juel1)131924$$aGensch, Thomas$$b16
001021291 7001_ $$00000-0001-5731-1297$$aHendrix, Jelle$$b17$$eCorresponding author
001021291 7001_ $$0P:(DE-Juel1)179072$$aBorshchevskiy, Valentin$$b18$$eCorresponding author
001021291 773__ $$0PERI:(DE-600)2919698-X$$a10.1038/s42003-023-04727-z$$gVol. 6, no. 1, p. 362$$n1$$p362$$tCommunications biology$$v6$$x2399-3642$$y2023
001021291 8564_ $$uhttps://juser.fz-juelich.de/record/1021291/files/Communications_Biology_Gensch_Hendrix%2C%20Borshchevskiy_04_2023.pdf$$yOpenAccess
001021291 8564_ $$uhttps://juser.fz-juelich.de/record/1021291/files/Communications_Biology_Gensch_Hendrix%2C%20Borshchevskiy_04_2023.gif?subformat=icon$$xicon$$yOpenAccess
001021291 8564_ $$uhttps://juser.fz-juelich.de/record/1021291/files/Communications_Biology_Gensch_Hendrix%2C%20Borshchevskiy_04_2023.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001021291 8564_ $$uhttps://juser.fz-juelich.de/record/1021291/files/Communications_Biology_Gensch_Hendrix%2C%20Borshchevskiy_04_2023.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001021291 8564_ $$uhttps://juser.fz-juelich.de/record/1021291/files/Communications_Biology_Gensch_Hendrix%2C%20Borshchevskiy_04_2023.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001021291 909CO $$ooai:juser.fz-juelich.de:1021291$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001021291 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131964$$aForschungszentrum Jülich$$b10$$kFZJ
001021291 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131924$$aForschungszentrum Jülich$$b16$$kFZJ
001021291 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5244$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001021291 9141_ $$y2023
001021291 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
001021291 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-27
001021291 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-27
001021291 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-27
001021291 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-27
001021291 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2023-10-27
001021291 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMMUN BIOL : 2022$$d2023-10-27
001021291 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-27
001021291 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T15:13:06Z
001021291 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T15:13:06Z
001021291 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-27
001021291 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-27
001021291 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
001021291 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001021291 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001021291 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-27
001021291 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-27
001021291 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCOMMUN BIOL : 2022$$d2023-10-27
001021291 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
001021291 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-27
001021291 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
001021291 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T15:13:06Z
001021291 920__ $$lyes
001021291 9201_ $$0I:(DE-Juel1)IBI-1-20200312$$kIBI-1$$lMolekular- und Zellphysiologie$$x0
001021291 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x1
001021291 980__ $$ajournal
001021291 980__ $$aVDB
001021291 980__ $$aUNRESTRICTED
001021291 980__ $$aI:(DE-Juel1)IBI-1-20200312
001021291 980__ $$aI:(DE-Juel1)IBI-7-20200312
001021291 9801_ $$aFullTexts