001     1021291
005     20240226075345.0
024 7 _ |a 10.1038/s42003-023-04727-z
|2 doi
024 7 _ |a 10.34734/FZJ-2024-00721
|2 datacite_doi
024 7 _ |a 37012383
|2 pmid
024 7 _ |a WOS:000962868600002
|2 WOS
037 _ _ |a FZJ-2024-00721
082 _ _ |a 570
100 1 _ |a Maslov, Ivan
|0 0000-0003-3371-4416
|b 0
245 _ _ |a Sub-millisecond conformational dynamics of the A2A adenosine receptor revealed by single-molecule FRET
260 _ _ |a London
|c 2023
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1705907651_5088
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a A.L., A.B., and V.B. are thankful for the Ministry of Science and Higher Education of theRussian Federation (agreement #075-03-2023-106, project FSMG-2020-0003). IMacknowledges the UHasselt Special Research Fund. Measurements of surface expressionand Gs-signaling were supported by the Russian Science Foundation (project no. 22-74-10036; https://rscf.ru/project/22-74-10036/). Computational simulations were supportedby the National Natural Science Foundation of China, grant #32250410316 (to PO). Weacknowledge the Advanced Optical Microscopy Centre at Hasselt University for supportwith microscopy experiments. Microscopy was made possible by the Research Foundation Flanders (FWO, projects G0B4915, G0B9922N, and G0H3716N).
520 _ _ |a The complex pharmacology of G-protein-coupled receptors (GPCRs) is defined by their multi-state conformational dynamics. Single-molecule Förster Resonance Energy Transfer (smFRET) is well suited to quantify dynamics for individual protein molecules; however, its application to GPCRs is challenging. Therefore, smFRET has been limited to studies of inter-receptor interactions in cellular membranes and receptors in detergent environments. Here, we performed smFRET experiments on functionally active human A2A adenosine receptor (A2AAR) molecules embedded in freely diffusing lipid nanodiscs to study their intramolecular conformational dynamics. We propose a dynamic model of A2AAR activation that involves a slow (>2 ms) exchange between the active-like and inactive-like conformations in both apo and antagonist-bound A2AAR, explaining the receptor’s constitutive activity. For the agonist-bound A2AAR, we detected faster (390 ± 80 µs) ligand efficacy-dependent dynamics. Our work establishes a general smFRET platform for GPCR investigations that can potentially be used for drug screening and/or mechanism-of-action studies.
536 _ _ |a 5244 - Information Processing in Neuronal Networks (POF4-524)
|0 G:(DE-HGF)POF4-5244
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Volkov, Oleksandr
|0 P:(DE-Juel1)170083
|b 1
700 1 _ |a Khorn, Polina
|0 0000-0002-2117-2130
|b 2
700 1 _ |a Orekhov, Philipp
|0 0000-0003-4078-4762
|b 3
700 1 _ |a Gusach, Anastasiia
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kuzmichev, Pavel
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Gerasimov, Andrey
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Luginina, Aleksandra
|0 0000-0003-2697-456X
|b 7
700 1 _ |a Coucke, Quinten
|0 0000-0002-2493-2668
|b 8
700 1 _ |a Bogorodskiy, Andrey
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Gordeliy, Valentin
|0 P:(DE-Juel1)131964
|b 10
700 1 _ |a Wanninger, Simon
|0 0000-0002-9236-4762
|b 11
700 1 _ |a Barth, Anders
|0 0000-0003-3671-3072
|b 12
700 1 _ |a Mishin, Alexey
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Hofkens, Johan
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Cherezov, Vadim
|0 0000-0002-5265-3914
|b 15
700 1 _ |a Gensch, Thomas
|0 P:(DE-Juel1)131924
|b 16
700 1 _ |a Hendrix, Jelle
|0 0000-0001-5731-1297
|b 17
|e Corresponding author
700 1 _ |a Borshchevskiy, Valentin
|0 P:(DE-Juel1)179072
|b 18
|e Corresponding author
773 _ _ |a 10.1038/s42003-023-04727-z
|g Vol. 6, no. 1, p. 362
|0 PERI:(DE-600)2919698-X
|n 1
|p 362
|t Communications biology
|v 6
|y 2023
|x 2399-3642
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1021291/files/Communications_Biology_Gensch_Hendrix%2C%20Borshchevskiy_04_2023.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1021291/files/Communications_Biology_Gensch_Hendrix%2C%20Borshchevskiy_04_2023.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1021291/files/Communications_Biology_Gensch_Hendrix%2C%20Borshchevskiy_04_2023.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1021291/files/Communications_Biology_Gensch_Hendrix%2C%20Borshchevskiy_04_2023.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1021291/files/Communications_Biology_Gensch_Hendrix%2C%20Borshchevskiy_04_2023.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1021291
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)131964
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 16
|6 P:(DE-Juel1)131924
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5244
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-10-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMMUN BIOL : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T15:13:06Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T15:13:06Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-27
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b COMMUN BIOL : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T15:13:06Z
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-1-20200312
|k IBI-1
|l Molekular- und Zellphysiologie
|x 0
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-1-20200312
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21