001021295 001__ 1021295
001021295 005__ 20250204113754.0
001021295 0247_ $$2doi$$a10.1073/pnas.2311732121
001021295 0247_ $$2ISSN$$a0027-8424
001021295 0247_ $$2ISSN$$a1091-6490
001021295 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-00722
001021295 0247_ $$2WOS$$aWOS:001164841400002
001021295 037__ $$aFZJ-2024-00722
001021295 082__ $$a500
001021295 1001_ $$00000-0003-0568-8556$$aLi, Guo-Xing$$b0$$eFirst author
001021295 245__ $$aInterfacial solvation-structure regulation for stable Li metal anode by a desolvation coating technique
001021295 260__ $$aWashington, DC$$bNational Acad. of Sciences$$c2024
001021295 3367_ $$2DRIVER$$aarticle
001021295 3367_ $$2DataCite$$aOutput Types/Journal article
001021295 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1711524984_17686
001021295 3367_ $$2BibTeX$$aARTICLE
001021295 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001021295 3367_ $$00$$2EndNote$$aJournal Article
001021295 520__ $$aRechargeable lithium (Li) metal batteries face challenges in achieving stable cycling due to the instability of the solid electrolyte interphase (SEI). The Li-ion solvation structure and its desolvation process are crucial for the formation of a stable SEI on Li metal anodes and improving Li plating/stripping kinetics. This research introduces an interfacial desolvation coating technique to actively modulate the Li-ion solvation structure at the Li metal interface and regulate the participation of the electrolyte solvent in SEI formation. Through experimental investigations conducted using a carbonate electrolyte with limited compatibility to Li metal, the optimized desolvation coating layer, composed of 12-crown-4 ether-modified silica materials, selectively displaces strongly coordinating solvents while simultaneously enriching weakly coordinating fluorinated solvents at the Li metal/electrolyte interface. This selective desolvation and enrichment effect reduce solvent participation to SEI and thus facilitate the formation of a LiF-dominant SEI with greatly reduced organic species on the Li metal surface, as conclusively verified through various characterization techniques including XPS, quantitative NMR, operando NMR, cryo-TEM, EELS, and EDS. The interfacial desolvation coating technique enables excellent rate cycling stability (i.e., 1C) of the Li metal anode and prolonged cycling life of the Li||LiCoO2 pouch cell in the conventional carbonate electrolyte (E/C 2.6 g/Ah), with 80% capacity retention after 333 cycles.
001021295 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001021295 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x1
001021295 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x2
001021295 536__ $$0G:(BMBF)13XP0224A$$aLiSi - Lithium-Solid-Electrolyte Interfaces (13XP0224A)$$c13XP0224A$$x3
001021295 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001021295 7001_ $$0P:(DE-Juel1)164855$$aLennartz, Peter$$b1
001021295 7001_ $$0P:(DE-HGF)0$$aKoverga, Volodymyr$$b2
001021295 7001_ $$0P:(DE-HGF)0$$aKou, Rong$$b3
001021295 7001_ $$0P:(DE-HGF)0$$aNguyen, Au$$b4
001021295 7001_ $$0P:(DE-HGF)0$$aJiang, Heng$$b5
001021295 7001_ $$00000-0002-8569-8860$$aLiao, Meng$$b6
001021295 7001_ $$0P:(DE-HGF)0$$aWang, Daiwei$$b7
001021295 7001_ $$0P:(DE-HGF)0$$aDandu, Naveen$$b8
001021295 7001_ $$00009-0003-4910-7159$$aZepeda, Michael$$b9
001021295 7001_ $$0P:(DE-HGF)0$$aWang, Haiying$$b10
001021295 7001_ $$0P:(DE-HGF)0$$aWang, Ke$$b11
001021295 7001_ $$0P:(DE-HGF)0$$aNgo, Anh T.$$b12
001021295 7001_ $$0P:(DE-Juel1)172047$$aBrunklaus, Gunther$$b13$$eCorresponding author
001021295 7001_ $$00000-0001-7261-8510$$aWang, Donghai$$b14$$eCorresponding author
001021295 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.2311732121$$gVol. 121, no. 4, p. e2311732121$$n4$$pe2311732121$$tProceedings of the National Academy of Sciences of the United States of America$$v121$$x0027-8424$$y2024
001021295 8564_ $$uhttps://juser.fz-juelich.de/record/1021295/files/Li2024_PNAS_preprint.pdf$$yOpenAccess
001021295 8564_ $$uhttps://juser.fz-juelich.de/record/1021295/files/li-et-al-2024-interfacial-solvation-structure-regulation-for-stable-li-metal-anode-by-a-desolvation-coating-technique.pdf$$yOpenAccess
001021295 8564_ $$uhttps://juser.fz-juelich.de/record/1021295/files/Li2024_PNAS_preprint.gif?subformat=icon$$xicon$$yOpenAccess
001021295 8564_ $$uhttps://juser.fz-juelich.de/record/1021295/files/Li2024_PNAS_preprint.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001021295 8564_ $$uhttps://juser.fz-juelich.de/record/1021295/files/Li2024_PNAS_preprint.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001021295 8564_ $$uhttps://juser.fz-juelich.de/record/1021295/files/Li2024_PNAS_preprint.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001021295 8564_ $$uhttps://juser.fz-juelich.de/record/1021295/files/li-et-al-2024-interfacial-solvation-structure-regulation-for-stable-li-metal-anode-by-a-desolvation-coating-technique.gif?subformat=icon$$xicon$$yOpenAccess
001021295 8564_ $$uhttps://juser.fz-juelich.de/record/1021295/files/li-et-al-2024-interfacial-solvation-structure-regulation-for-stable-li-metal-anode-by-a-desolvation-coating-technique.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001021295 8564_ $$uhttps://juser.fz-juelich.de/record/1021295/files/li-et-al-2024-interfacial-solvation-structure-regulation-for-stable-li-metal-anode-by-a-desolvation-coating-technique.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001021295 8564_ $$uhttps://juser.fz-juelich.de/record/1021295/files/li-et-al-2024-interfacial-solvation-structure-regulation-for-stable-li-metal-anode-by-a-desolvation-coating-technique.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001021295 909CO $$ooai:juser.fz-juelich.de:1021295$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001021295 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164855$$aForschungszentrum Jülich$$b1$$kFZJ
001021295 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172047$$aForschungszentrum Jülich$$b13$$kFZJ
001021295 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001021295 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x1
001021295 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x2
001021295 9141_ $$y2024
001021295 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-26
001021295 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-26
001021295 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001021295 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-26
001021295 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001021295 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-10$$wger
001021295 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bP NATL ACAD SCI USA : 2022$$d2024-12-10
001021295 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10
001021295 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10
001021295 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-10
001021295 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-10
001021295 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10
001021295 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2024-12-10
001021295 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2024-12-10
001021295 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-10
001021295 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-10
001021295 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10
001021295 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bP NATL ACAD SCI USA : 2022$$d2024-12-10
001021295 920__ $$lyes
001021295 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001021295 9801_ $$aFullTexts
001021295 980__ $$ajournal
001021295 980__ $$aVDB
001021295 980__ $$aUNRESTRICTED
001021295 980__ $$aI:(DE-Juel1)IEK-12-20141217
001021295 981__ $$aI:(DE-Juel1)IMD-4-20141217