001     1021295
005     20250204113754.0
024 7 _ |a 10.1073/pnas.2311732121
|2 doi
024 7 _ |a 0027-8424
|2 ISSN
024 7 _ |a 1091-6490
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-00722
|2 datacite_doi
024 7 _ |a WOS:001164841400002
|2 WOS
037 _ _ |a FZJ-2024-00722
082 _ _ |a 500
100 1 _ |a Li, Guo-Xing
|0 0000-0003-0568-8556
|b 0
|e First author
245 _ _ |a Interfacial solvation-structure regulation for stable Li metal anode by a desolvation coating technique
260 _ _ |a Washington, DC
|c 2024
|b National Acad. of Sciences
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1711524984_17686
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Rechargeable lithium (Li) metal batteries face challenges in achieving stable cycling due to the instability of the solid electrolyte interphase (SEI). The Li-ion solvation structure and its desolvation process are crucial for the formation of a stable SEI on Li metal anodes and improving Li plating/stripping kinetics. This research introduces an interfacial desolvation coating technique to actively modulate the Li-ion solvation structure at the Li metal interface and regulate the participation of the electrolyte solvent in SEI formation. Through experimental investigations conducted using a carbonate electrolyte with limited compatibility to Li metal, the optimized desolvation coating layer, composed of 12-crown-4 ether-modified silica materials, selectively displaces strongly coordinating solvents while simultaneously enriching weakly coordinating fluorinated solvents at the Li metal/electrolyte interface. This selective desolvation and enrichment effect reduce solvent participation to SEI and thus facilitate the formation of a LiF-dominant SEI with greatly reduced organic species on the Li metal surface, as conclusively verified through various characterization techniques including XPS, quantitative NMR, operando NMR, cryo-TEM, EELS, and EDS. The interfacial desolvation coating technique enables excellent rate cycling stability (i.e., 1C) of the Li metal anode and prolonged cycling life of the Li||LiCoO2 pouch cell in the conventional carbonate electrolyte (E/C 2.6 g/Ah), with 80% capacity retention after 333 cycles.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
536 _ _ |a 1222 - Components and Cells (POF4-122)
|0 G:(DE-HGF)POF4-1222
|c POF4-122
|f POF IV
|x 1
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 2
536 _ _ |a LiSi - Lithium-Solid-Electrolyte Interfaces (13XP0224A)
|0 G:(BMBF)13XP0224A
|c 13XP0224A
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Lennartz, Peter
|0 P:(DE-Juel1)164855
|b 1
700 1 _ |a Koverga, Volodymyr
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kou, Rong
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Nguyen, Au
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Jiang, Heng
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Liao, Meng
|0 0000-0002-8569-8860
|b 6
700 1 _ |a Wang, Daiwei
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Dandu, Naveen
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Zepeda, Michael
|0 0009-0003-4910-7159
|b 9
700 1 _ |a Wang, Haiying
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Wang, Ke
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Ngo, Anh T.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Brunklaus, Gunther
|0 P:(DE-Juel1)172047
|b 13
|e Corresponding author
700 1 _ |a Wang, Donghai
|0 0000-0001-7261-8510
|b 14
|e Corresponding author
773 _ _ |a 10.1073/pnas.2311732121
|g Vol. 121, no. 4, p. e2311732121
|0 PERI:(DE-600)1461794-8
|n 4
|p e2311732121
|t Proceedings of the National Academy of Sciences of the United States of America
|v 121
|y 2024
|x 0027-8424
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1021295/files/Li2024_PNAS_preprint.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1021295/files/li-et-al-2024-interfacial-solvation-structure-regulation-for-stable-li-metal-anode-by-a-desolvation-coating-technique.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1021295/files/Li2024_PNAS_preprint.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1021295/files/Li2024_PNAS_preprint.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1021295/files/Li2024_PNAS_preprint.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1021295/files/Li2024_PNAS_preprint.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1021295/files/li-et-al-2024-interfacial-solvation-structure-regulation-for-stable-li-metal-anode-by-a-desolvation-coating-technique.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1021295/files/li-et-al-2024-interfacial-solvation-structure-regulation-for-stable-li-metal-anode-by-a-desolvation-coating-technique.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1021295/files/li-et-al-2024-interfacial-solvation-structure-regulation-for-stable-li-metal-anode-by-a-desolvation-coating-technique.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1021295/files/li-et-al-2024-interfacial-solvation-structure-regulation-for-stable-li-metal-anode-by-a-desolvation-coating-technique.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1021295
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)164855
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)172047
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1222
|x 1
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 2
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-26
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-10
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b P NATL ACAD SCI USA : 2022
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-10
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b P NATL ACAD SCI USA : 2022
|d 2024-12-10
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21