001021427 001__ 1021427
001021427 005__ 20250203103456.0
001021427 037__ $$aFZJ-2024-00724
001021427 041__ $$aEnglish
001021427 1001_ $$0P:(DE-Juel1)192242$$aManea, Paul$$b0$$eCorresponding author
001021427 1112_ $$a18th ACM International Symposium on Nanoscale Architectures$$cDresden$$d2023-12-18 - 2023-12-20$$wGermany
001021427 245__ $$aNon-idealities and Design Solutions for Analog Memristor-Based Content-Addressable Memories
001021427 260__ $$c2023
001021427 300__ $$a6
001021427 3367_ $$2ORCID$$aCONFERENCE_PAPER
001021427 3367_ $$033$$2EndNote$$aConference Paper
001021427 3367_ $$2BibTeX$$aINPROCEEDINGS
001021427 3367_ $$2DRIVER$$aconferenceObject
001021427 3367_ $$2DataCite$$aOutput Types/Conference Paper
001021427 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1710310537_1593
001021427 520__ $$aMemristor-based analog Content Addressable Memories (aCAMs)offer robust parallel pattern look-up capabilities, significantly en-hancing the scope of In-Memory Computing applications. Thispaper presents challenges of these analog circuits, which may oc-cur during the inference, and proposes solutions to overcome them.Precisely, we investigate the impact of temperature-dependent be-havior, CMOS process variations and memristor telegraph readnoise. We demonstrate that one challenging issue affecting memris-tors analog computing applications, namely telegraph read noise, isnot a significant problem in aCAM. We introduce a framework thataccounts for these combined distortions to define variability-awareaCAM windows and estimate the bit resolution of a CAM cell. Usingthis framework we estimate the bit resolution to 2 bits before apply-ing compensating measures and to 4 bits afterwards. We study howvariations affect the inference accuracy of the IRIS classificationdataset using our novel torchCAM model. We introduce a stream-lined aCAM design featuring a memristor comparator for simplifiedinput-to-reference comparison and a novel cell architecture withtwo symmetrical memristor comparator units.
001021427 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001021427 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x1
001021427 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x2
001021427 536__ $$0G:(DE-82)BMBF-16ME0398K$$aBMBF 16ME0398K - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0398K)$$cBMBF-16ME0398K$$x3
001021427 7001_ $$0P:(DE-Juel1)198888$$aSudarshan, Chirag$$b1
001021427 7001_ $$0P:(DE-Juel1)173924$$aCüppers, Felix$$b2
001021427 7001_ $$0P:(DE-Juel1)188145$$aStrachan, John Paul$$b3
001021427 8564_ $$uhttps://juser.fz-juelich.de/record/1021427/files/nanoarch23-19-3.pdf$$yRestricted
001021427 8564_ $$uhttps://juser.fz-juelich.de/record/1021427/files/nanoarch23-19-3.gif?subformat=icon$$xicon$$yRestricted
001021427 8564_ $$uhttps://juser.fz-juelich.de/record/1021427/files/nanoarch23-19-3.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001021427 8564_ $$uhttps://juser.fz-juelich.de/record/1021427/files/nanoarch23-19-3.jpg?subformat=icon-180$$xicon-180$$yRestricted
001021427 8564_ $$uhttps://juser.fz-juelich.de/record/1021427/files/nanoarch23-19-3.jpg?subformat=icon-640$$xicon-640$$yRestricted
001021427 909CO $$ooai:juser.fz-juelich.de:1021427$$pVDB
001021427 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192242$$aForschungszentrum Jülich$$b0$$kFZJ
001021427 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)198888$$aForschungszentrum Jülich$$b1$$kFZJ
001021427 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173924$$aForschungszentrum Jülich$$b2$$kFZJ
001021427 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188145$$aForschungszentrum Jülich$$b3$$kFZJ
001021427 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001021427 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
001021427 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x2
001021427 9141_ $$y2024
001021427 920__ $$lyes
001021427 9201_ $$0I:(DE-Juel1)PGI-14-20210412$$kPGI-14$$lNeuromorphic Compute Nodes$$x0
001021427 980__ $$acontrib
001021427 980__ $$aVDB
001021427 980__ $$aI:(DE-Juel1)PGI-14-20210412
001021427 980__ $$aUNRESTRICTED