001021431 001__ 1021431
001021431 005__ 20250204113754.0
001021431 0247_ $$2doi$$a10.1016/j.nme.2023.101577
001021431 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-00728
001021431 0247_ $$2WOS$$aWOS:001154211000001
001021431 037__ $$aFZJ-2024-00728
001021431 041__ $$aEnglish
001021431 082__ $$a624
001021431 1001_ $$0P:(DE-Juel1)191314$$aTweer, Jannik$$b0$$eCorresponding author$$ufzj
001021431 245__ $$aInitial experiments to regenerate the surface of plasma-facing components by wire-based laser metal deposition
001021431 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2024
001021431 3367_ $$2DRIVER$$aarticle
001021431 3367_ $$2DataCite$$aOutput Types/Journal article
001021431 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1705998942_24242
001021431 3367_ $$2BibTeX$$aARTICLE
001021431 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001021431 3367_ $$00$$2EndNote$$aJournal Article
001021431 520__ $$aPlasma-facing components (PFC) in nuclear fusion reactors are exposed to demanding conditions during operation. The combination of thermal loads, plasma exposure as well as neutron induced damage and activation limits the number of materials suitable for this application. Due to its properties, tungsten (W) is foreseen as plasma-facing material (PFM) for the future DEMOnstration power plant. It is considered suitable due to its exceptionally high melting point, excellent thermal conductivity, low tritium retention and low erosion resistance during plasma exposure. But even tungsten armored PFCs have a limited lifetime due to, among other factors, surface erosion and the resulting thickness reduction of the armor material.In-situ local deposition of tungsten by means of additive manufacturing (AM) could counteract surface erosion and thus increase the service life span of PFCs. After evaluation of the potential AM processes qualified for this task, the wire-based laser metal deposition (LMD-w) process was selected as the most suitable process. First trials were conducted to examine if it is possible to reliably deposit tungsten onto tungsten substrate using the LMD-w process. In these first studies, single welding beads were generated, and in later experiments, entire layers were created from several welding beads which are arranged next to each other. To ensure reproducibility of the results, the substrate temperature was kept constant. Further experiments aimed at the elimination or minimization of problems such as oxidation, occurrence of balling defects, porosity, cracking, surface waviness and insufficient connection to the substrate. To increase the welding bead quality, the input parameters like laser power, deposition velocity, wire feed rate, inert gas flow, as well as the wire position were optimized. Furthermore, stacking of several layers, as well as the remelting of an already created layer, were carried out and investigated. This study represents the first steps in testing the feasibility of an in-situ surface regeneration concept for PFCs.
001021431 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0
001021431 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001021431 7001_ $$0P:(DE-HGF)0$$aDay, Robin$$b1
001021431 7001_ $$00000-0002-4829-8008$$aDerra, Thomas$$b2
001021431 7001_ $$0P:(DE-Juel1)171293$$aDorow-Gerspach, Daniel$$b3
001021431 7001_ $$0P:(DE-Juel1)129751$$aLoewenhoff, Thorsten$$b4
001021431 7001_ $$0P:(DE-Juel1)129811$$aWirtz, Marius$$b5
001021431 7001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Christian$$b6
001021431 7001_ $$0P:(DE-HGF)0$$aBergs, Thomas$$b7
001021431 7001_ $$0P:(DE-Juel1)142196$$aNatour, Ghaleb$$b8
001021431 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2023.101577$$gVol. 38, p. 101577 -$$p101577 -$$tNuclear materials and energy$$v38$$x2352-1791$$y2024
001021431 8564_ $$uhttps://juser.fz-juelich.de/record/1021431/files/1-s2.0-S2352179123002168-main.pdf$$yOpenAccess
001021431 8564_ $$uhttps://juser.fz-juelich.de/record/1021431/files/1-s2.0-S2352179123002168-main.gif?subformat=icon$$xicon$$yOpenAccess
001021431 8564_ $$uhttps://juser.fz-juelich.de/record/1021431/files/1-s2.0-S2352179123002168-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001021431 8564_ $$uhttps://juser.fz-juelich.de/record/1021431/files/1-s2.0-S2352179123002168-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001021431 8564_ $$uhttps://juser.fz-juelich.de/record/1021431/files/1-s2.0-S2352179123002168-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001021431 8767_ $$8E-2024-00381-b$$92024-06-05$$a1200204254$$d2024-06-10$$eAPC$$jZahlung erfolgt
001021431 909CO $$ooai:juser.fz-juelich.de:1021431$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001021431 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191314$$aForschungszentrum Jülich$$b0$$kFZJ
001021431 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b1$$kExtern
001021431 9101_ $$0I:(DE-HGF)0$$60000-0002-4829-8008$$aExternal Institute$$b2$$kExtern
001021431 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171293$$aForschungszentrum Jülich$$b3$$kFZJ
001021431 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129751$$aForschungszentrum Jülich$$b4$$kFZJ
001021431 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129811$$aForschungszentrum Jülich$$b5$$kFZJ
001021431 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich$$b6$$kFZJ
001021431 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b7$$kExtern
001021431 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142196$$aForschungszentrum Jülich$$b8$$kFZJ
001021431 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
001021431 9141_ $$y2024
001021431 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001021431 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001021431 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001021431 915pc $$0PC:(DE-HGF)0125$$2APC$$aDEAL: Elsevier 09/01/2023
001021431 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001021431 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001021431 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T08:51:15Z
001021431 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T08:51:15Z
001021431 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-22
001021431 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-22
001021431 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001021431 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2023-05-02T08:51:15Z
001021431 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-22
001021431 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-22
001021431 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL MATER ENERGY : 2022$$d2025-01-06
001021431 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-06
001021431 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-06
001021431 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2025-01-06
001021431 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-06
001021431 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-06
001021431 920__ $$lyes
001021431 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
001021431 9801_ $$aFullTexts
001021431 980__ $$ajournal
001021431 980__ $$aVDB
001021431 980__ $$aUNRESTRICTED
001021431 980__ $$aI:(DE-Juel1)IEK-4-20101013
001021431 980__ $$aAPC
001021431 981__ $$aI:(DE-Juel1)IFN-1-20101013