| Hauptseite > Publikationsdatenbank > SiGe Qubit Biasing with a Cryogenic CMOS DAC at mK Temperature > print |
| 001 | 1021432 | ||
| 005 | 20250129092403.0 | ||
| 037 | _ | _ | |a FZJ-2024-00729 |
| 100 | 1 | _ | |a Schreckenberg, Lea |0 P:(DE-Juel1)180854 |b 0 |e Corresponding author |u fzj |
| 111 | 2 | _ | |a ESSCIRC 2023- IEEE 49th European Solid State Circuits Conference (ESSCIRC) |c Lisbon |d 2023-09-11 - 2023-09-14 |w Portugal |
| 245 | _ | _ | |a SiGe Qubit Biasing with a Cryogenic CMOS DAC at mK Temperature |
| 260 | _ | _ | |c 2023 |
| 336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
| 336 | 7 | _ | |a Other |2 DataCite |
| 336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
| 336 | 7 | _ | |a conferenceObject |2 DRIVER |
| 336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
| 336 | 7 | _ | |a Conference Presentation |b conf |m conf |0 PUB:(DE-HGF)6 |s 1705664744_18115 |2 PUB:(DE-HGF) |x After Call |
| 500 | _ | _ | |a Corresponding Journal Paper: https://juser.fz-juelich.de/record/1018304 |
| 520 | _ | _ | |a For running advanced algorithms on a universal quantum computer, millions of qubits are required. To make use of quantum effects, state-of-the-art solid-state qubit devices have to be cooled to mK temperatures, which limits the systems’ scalability with room temperature (RT) electronics. We present the direct co-integration of a scalable, fully integrated, eight channel Bias-DAC designed in a 65-nm bulk CMOS technology and a Si/SiGe spin qubit device at the mixing chamber (MC) of a dilution refrigerator operating below 45 mK MC temperature. As a full proof of principle, the bias of a single electron transistor used as a sensing dot, as well as a single and double quantum dot bias of the qubit device is reported. The slow drift of the DAC S&H output circuit of 0.96 μV/s leads to a calculated prospective power consumption of 64.5 pW/ch for DC qubit bias voltages generated at low temperature |
| 536 | _ | _ | |a 5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522) |0 G:(DE-HGF)POF4-5223 |c POF4-522 |f POF IV |x 0 |
| 536 | _ | _ | |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522) |0 G:(DE-HGF)POF4-5221 |c POF4-522 |f POF IV |x 1 |
| 700 | 1 | _ | |a Otten, Rene |0 P:(DE-Juel1)174088 |b 1 |u fzj |
| 700 | 1 | _ | |a Vliex, Patrick |0 P:(DE-Juel1)171680 |b 2 |u fzj |
| 700 | 1 | _ | |a Xue, Ran |0 P:(DE-Juel1)186616 |b 3 |
| 700 | 1 | _ | |a Tu, Jhih-Sian |0 P:(DE-Juel1)167206 |b 4 |u fzj |
| 700 | 1 | _ | |a Seidler, Inga |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Trellenkamp, Stefan |0 P:(DE-Juel1)128856 |b 6 |u fzj |
| 700 | 1 | _ | |a Schreiber, Lars |0 P:(DE-Juel1)172641 |b 7 |u fzj |
| 700 | 1 | _ | |a Bluhm, Hendrik |0 P:(DE-Juel1)172019 |b 8 |u fzj |
| 700 | 1 | _ | |a van Waasen, Stefan |0 P:(DE-Juel1)142562 |b 9 |u fzj |
| 909 | C | O | |o oai:juser.fz-juelich.de:1021432 |p VDB |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)180854 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)174088 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)171680 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)167206 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)128856 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)172641 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)172019 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)142562 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-522 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Computing |9 G:(DE-HGF)POF4-5223 |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-522 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Computing |9 G:(DE-HGF)POF4-5221 |x 1 |
| 914 | 1 | _ | |y 2023 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)ZEA-2-20090406 |k ZEA-2 |l Zentralinstitut für Elektronik |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-11-20170113 |k PGI-11 |l JARA Institut Quanteninformation |x 1 |
| 920 | 1 | _ | |0 I:(DE-Juel1)HNF-20170116 |k HNF |l Helmholtz - Nanofacility |x 2 |
| 980 | _ | _ | |a conf |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)ZEA-2-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-11-20170113 |
| 980 | _ | _ | |a I:(DE-Juel1)HNF-20170116 |
| 980 | _ | _ | |a UNRESTRICTED |
| 981 | _ | _ | |a I:(DE-Juel1)PGI-4-20110106 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|