001021440 001__ 1021440
001021440 005__ 20240712113148.0
001021440 037__ $$aFZJ-2024-00736
001021440 041__ $$aEnglish
001021440 1001_ $$0P:(DE-Juel1)180638$$aZhang, Yufan$$b0
001021440 1112_ $$aElectrolyzer, Fuel Cell Forum 2023$$cLuzern$$d2023-07-04 - 2023-07-07$$gEFCF 2023$$wSwitzerland
001021440 245__ $$aModelling Water Phenomenon in the Cathode Side of Polymer Electrolyte Fuel Cells
001021440 260__ $$c2023
001021440 3367_ $$033$$2EndNote$$aConference Paper
001021440 3367_ $$2DataCite$$aOther
001021440 3367_ $$2BibTeX$$aINPROCEEDINGS
001021440 3367_ $$2DRIVER$$aconferenceObject
001021440 3367_ $$2ORCID$$aLECTURE_SPEECH
001021440 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1705993850_11472$$xOther
001021440 520__ $$aWater exerts a crucial influence on the performance of a polymer electrolyte fuel cell. as both “catalyst activating agent” and “oxygen blocker”. Therefore, fine-tuning the water distribution is imperative for high performance. In this work, we present a water balance model to calculate the distribution of liquid water in cathode catalyst layer and diffusion media. The model incorporates the influence of the local liquid water saturation on the effective transport properties. Liquid water saturation is both a composition variable determining the effective properties, and a solution variable depending on the solution of the transport equations that use the effective properties. The model reveals the formation of a thin water layer in the diffusion media (DM) adjacent to the cathode catalyst layer (CCL). The interfacial water layer strongly impedes oxygen transport and reduces the oxygen concentration in CCL, which causes the knee-shape voltage loss and drastically reduces the cell performance. We elucidate the origin of the water layer, present parametric studies of this effect, and propose mitigation strategies. The fundamental understanding obtained will aid the development of membrane electrode assemblies with tailored pore network properties to achieve vital improvements in performance.
001021440 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001021440 7001_ $$0P:(DE-Juel1)178966$$aKadyk, Thomas$$b1
001021440 7001_ $$0P:(DE-Juel1)178034$$aEikerling, Michael$$b2$$eCorresponding author
001021440 7001_ $$0P:(DE-HGF)0$$aAgranvante, Gerard$$b3
001021440 8564_ $$uhttps://juser.fz-juelich.de/record/1021440/files/Abstract.docx$$yRestricted
001021440 909CO $$ooai:juser.fz-juelich.de:1021440$$pVDB
001021440 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180638$$aForschungszentrum Jülich$$b0$$kFZJ
001021440 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178966$$aForschungszentrum Jülich$$b1$$kFZJ
001021440 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178034$$aForschungszentrum Jülich$$b2$$kFZJ
001021440 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001021440 9141_ $$y2023
001021440 920__ $$lyes
001021440 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
001021440 980__ $$aconf
001021440 980__ $$aVDB
001021440 980__ $$aI:(DE-Juel1)IEK-13-20190226
001021440 980__ $$aUNRESTRICTED
001021440 981__ $$aI:(DE-Juel1)IET-3-20190226