001     1021440
005     20240712113148.0
037 _ _ |a FZJ-2024-00736
041 _ _ |a English
100 1 _ |a Zhang, Yufan
|0 P:(DE-Juel1)180638
|b 0
111 2 _ |a Electrolyzer, Fuel Cell Forum 2023
|g EFCF 2023
|c Luzern
|d 2023-07-04 - 2023-07-07
|w Switzerland
245 _ _ |a Modelling Water Phenomenon in the Cathode Side of Polymer Electrolyte Fuel Cells
260 _ _ |c 2023
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1705993850_11472
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a Water exerts a crucial influence on the performance of a polymer electrolyte fuel cell. as both “catalyst activating agent” and “oxygen blocker”. Therefore, fine-tuning the water distribution is imperative for high performance. In this work, we present a water balance model to calculate the distribution of liquid water in cathode catalyst layer and diffusion media. The model incorporates the influence of the local liquid water saturation on the effective transport properties. Liquid water saturation is both a composition variable determining the effective properties, and a solution variable depending on the solution of the transport equations that use the effective properties. The model reveals the formation of a thin water layer in the diffusion media (DM) adjacent to the cathode catalyst layer (CCL). The interfacial water layer strongly impedes oxygen transport and reduces the oxygen concentration in CCL, which causes the knee-shape voltage loss and drastically reduces the cell performance. We elucidate the origin of the water layer, present parametric studies of this effect, and propose mitigation strategies. The fundamental understanding obtained will aid the development of membrane electrode assemblies with tailored pore network properties to achieve vital improvements in performance.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
700 1 _ |a Kadyk, Thomas
|0 P:(DE-Juel1)178966
|b 1
700 1 _ |a Eikerling, Michael
|0 P:(DE-Juel1)178034
|b 2
|e Corresponding author
700 1 _ |a Agranvante, Gerard
|0 P:(DE-HGF)0
|b 3
856 4 _ |u https://juser.fz-juelich.de/record/1021440/files/Abstract.docx
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1021440
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180638
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)178966
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)178034
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2023
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-13-20190226
|k IEK-13
|l IEK-13
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-13-20190226
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-3-20190226


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21