001021441 001__ 1021441
001021441 005__ 20240712113149.0
001021441 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-00737
001021441 037__ $$aFZJ-2024-00737
001021441 041__ $$aEnglish
001021441 1001_ $$0P:(DE-Juel1)180638$$aZhang, Yufan$$b0$$ufzj
001021441 1112_ $$aAnnual meeting of international society of electrochemistry$$cLyon$$d2023-09-03 - 2023-09-08$$gISE$$wFrance
001021441 245__ $$aEntanglement of Electronic Interactions and Double-Layer Charging for Supported Electrocatalyst Nanoparticles Revealed by Density-Potential Functional Theory
001021441 260__ $$c2023
001021441 3367_ $$033$$2EndNote$$aConference Paper
001021441 3367_ $$2BibTeX$$aINPROCEEDINGS
001021441 3367_ $$2DRIVER$$aconferenceObject
001021441 3367_ $$2ORCID$$aCONFERENCE_POSTER
001021441 3367_ $$2DataCite$$aOutput Types/Conference Poster
001021441 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1705993009_10617$$xOther
001021441 520__ $$aMetal nanoparticles (NPs) on solid substrates are widely used as (electro)catalysts. Electron transfer between the catalyst NP and support material can strongly influence the catalytic activity, a phenomenon referred to as electronic metal-support interactions (EMSI) [1]. In situ X-ray absorption spectroscopy (XAS) provides a mean to probe the charging of catalyst NPs [2,3]. However, several key questions remained unclear, including the spatial distribution of transferred electrons and their actual impact on the NP’s catalytically active surface in contact with the electrolyte [4]. In addition, the charging characteristics of the electric double-layer (EDL) around the NP are affected by support and neighboring NPs [5]. Therefore, computer simulations are required to reveal the interrelation between electronic and double-layer effects, which is crucial for improving the catalytic activity of supported NPs.In this study, we use the recently developed framework of density-potential functional theory (DPFT) which combines orbital-free density functional theory and modified Poisson-Boltzmann theory to address solid and electrolyte phases simultaneously under constant potentials [6]. Our approach considers electronic phenomena like electron spillover, which is beyond the scope of traditional double-layer models. We also study the EDL of nanometer-scale particles, which is typically beyond the capability of DFT calculations.The effects of NP size, proximity, and support work function probed by in situ spectroscopy have sparked some controversies. Our model offers a rationale for these controversies by uncovering the interplay of electronic interactions and double-layer charging under constant potential conditions. Specifically, local reaction conditions, such as the local electric field and cation concentration, are regulated.Our model is relevant to experimental groups as it assists in the interpretation of in situ spectroscopy data regarding the distribution and catalytic consequences of transferred electrons. For the community of DFT-calculation-based materials screening, our model helps identify relevant descriptors for the catalytic properties of supported catalyst systems.
001021441 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001021441 7001_ $$0P:(DE-Juel1)194968$$aBinninger, Tobias$$b1$$ufzj
001021441 7001_ $$0P:(DE-Juel1)192568$$aHuang, Jun$$b2$$ufzj
001021441 7001_ $$0P:(DE-Juel1)178034$$aEikerling, Michael$$b3$$eCorresponding author$$ufzj
001021441 8564_ $$uhttps://juser.fz-juelich.de/record/1021441/files/Poster1%20a0_Yufan%20Zhang_SupNP.pdf$$yOpenAccess
001021441 8564_ $$uhttps://juser.fz-juelich.de/record/1021441/files/Poster1%20a0_Yufan%20Zhang_SupNP.gif?subformat=icon$$xicon$$yOpenAccess
001021441 8564_ $$uhttps://juser.fz-juelich.de/record/1021441/files/Poster1%20a0_Yufan%20Zhang_SupNP.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001021441 8564_ $$uhttps://juser.fz-juelich.de/record/1021441/files/Poster1%20a0_Yufan%20Zhang_SupNP.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001021441 8564_ $$uhttps://juser.fz-juelich.de/record/1021441/files/Poster1%20a0_Yufan%20Zhang_SupNP.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001021441 909CO $$ooai:juser.fz-juelich.de:1021441$$pdriver$$pVDB$$popen_access$$popenaire
001021441 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180638$$aForschungszentrum Jülich$$b0$$kFZJ
001021441 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194968$$aForschungszentrum Jülich$$b1$$kFZJ
001021441 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192568$$aForschungszentrum Jülich$$b2$$kFZJ
001021441 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178034$$aForschungszentrum Jülich$$b3$$kFZJ
001021441 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001021441 9141_ $$y2023
001021441 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001021441 920__ $$lyes
001021441 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
001021441 9801_ $$aFullTexts
001021441 980__ $$aposter
001021441 980__ $$aVDB
001021441 980__ $$aUNRESTRICTED
001021441 980__ $$aI:(DE-Juel1)IEK-13-20190226
001021441 981__ $$aI:(DE-Juel1)IET-3-20190226