001     1021442
005     20240712113144.0
024 7 _ |a 10.34734/FZJ-2024-00738
|2 datacite_doi
037 _ _ |a FZJ-2024-00738
041 _ _ |a English
100 1 _ |a Zhang, Yufan
|0 P:(DE-Juel1)180638
|b 0
|u fzj
111 2 _ |a Annual meeting of international society of electrochemistry
|g ISE
|c Lyon
|d 2023-09-03 - 2023-09-08
|w France
245 _ _ |a Criterion for Finding the Optimal Electrocatalyst at any Overpotential
260 _ _ |c 2023
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1705998072_24242
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a The generic volcano plot is a widely employed practical tool to display and compare the activity of different electrocatalysts in dependence of a small number of descriptors. It is known that the apex of the volcano curve shifts with applied potential. [1] However, the trend of the potential-dependent shift of the volcano apex has remained unclear. Herein, we address this question for a two-step electrocatalytic reaction. [2] With the transfer coefficient assumed as 1/2, our analysis reveals that the adsorbate coverage at the volcano apex equals 1/2 regardless of potential. We present a criterion to predict the direction and magnitude of the apex shift as a function of the activation energies of the two steps. Thereafter, the criterion is extended to the oxygen reduction reaction. The influence of the transfer coefficient and the potential of zero charge on the volcano plot is revealed. Implications of the presented criterion for targeted design of electrocatalysts are discussed.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
700 1 _ |a Huang, Jun
|0 P:(DE-Juel1)192568
|b 1
|u fzj
700 1 _ |a Eikerling, Michael
|0 P:(DE-Juel1)178034
|b 2
|e Corresponding author
|u fzj
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1021442/files/Poster.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1021442/files/Poster.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1021442/files/Poster.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1021442/files/Poster.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1021442/files/Poster.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1021442
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180638
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)192568
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)178034
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-13-20190226
|k IEK-13
|l IEK-13
|x 0
980 1 _ |a FullTexts
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-13-20190226
981 _ _ |a I:(DE-Juel1)IET-3-20190226


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21