Criterion for Finding the Optimal Electrocatalyst at Any Overpotential

JÜLICH Forschungszentrum

Scan me

Y. Zhang^{1,2}, J. Huang^{1,2}, M. Eikerling^{1,2}

- ¹ Theory and Computation of Energy Materials (IEK-13), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
 - ² Chair of Theory and Computation of Energy Materials, Faculty of Georesources and Materials Engineering, RWTH Aachen University, 52062 Aachen, Germany Corresponding author: yuf.zhang@fz-juelich.de, m.eikerling@fz-juelich.de

1. Motivation

Question: In which direction will the apex of volcano plot (VP) move with varying potential?

2. Microkinetic model

Generic 2-step reaction

 $* +A + e^{-} + H^{+} = AH^{*}$ Step 1

Step 2 $AH^* + e^- + H^+ = AH_2 + *$

Definition of parameters

Rate expressions

Step 1
$$v_1 = k_1[H^+][A](1 - \theta_{AH}) - k_{-1}\theta_{AH}$$
 steady state
Step 2 $v_2 = k_2[H^+]\theta_{AH} - k_{-2}[AH_2](1 - \theta_{AH})$ $v_1 = v_2 = TOF$

Coverage and turnover frequency (TOF)

$$\theta_{\text{AH}} = \frac{k_1[\text{H}^+][\text{A}] + k_{-2}[\text{AH}_2]}{k_1[\text{H}^+][\text{A}] + k_2[\text{H}^+] + k_{-1} + k_{-2}[\text{AH}_2]}$$

$$TOF = \frac{k_1 k_2 [H^+]^2 [A] - k_{-1} k_{-2} [AH_2]}{k_1 [H^+] [A] + k_2 [H^+] + k_{-1} + k_{-2} [AH_2]}$$

Concentr.
$$[H^+] = [H^+]_b \exp\left(-\frac{e\phi^{OHP}}{k_BT}\right)$$
 with ϕ^{OHP} given by an electrical double layer model

Rate constant
$$k_1 \propto \exp\left(-\frac{G_{\text{a},1}^{\text{eq},0} + \alpha_1 e(\phi^{\text{M}} - \phi^{\text{OHP}} - E_1^{\text{eq},0})}{k_{\text{B}}T}\right)$$

Equilibrium potential
$$E_1^{\text{eq,0}} = (\Delta G_A^0 - \Delta G_{AH}^0)/e$$

$$E_2^{\text{eq,0}} = (\Delta G_{\text{AH}}^0 - \Delta G_{\text{AH}_2}^0)/e$$

1. Alexander von Humboldt Foundation

2. National Natural Science Foundation of China under the grant number of 21802170

Acknowledgement References 1. Yufan Zhang et al. Electrochim. Acta 400 **2021** 139413

2. Yufan Zhang et al. *J. Phys. Chem. Lett.* **2019**, 10, 7037–7043

Member of the Helmholtz Association

3. Criterion and proof

Criterion: Consider a two-step proton-coupled electron transfer reaction in solution with high supporting-electrolyte concentration, transfer coefficient $\alpha=1/2$ and $[A]=[AH_2]$. If $G_{a,1}^{eq,0}< G_{a,2}^{eq,0}$, then as overpotential (η) increases $\Delta G_{
m AH}^{
m optim}$ becomes more positive, and levels off at very large η .

4. Generalization

Assumptions

Proof

Generalization

(i) $[A] = [AH_2]$

(i) [A] \neq [AH₂]

(ii) Two-step reaction

(ii) Multi-step reaction

(iii) $\alpha = 1/2$

(iii) α randomly sampled in [0.3,0.7]

New criterion for multi-step reaction, e.g. ORR $G_{\text{a,ad}}^{\text{eq,0}} - \frac{1}{2}k_{\text{B}}T\ln[\mathbf{0}_{2}] < G_{\text{a,de}}^{\text{eq,0}} - \frac{1}{2}k_{\text{B}}T\ln[\mathbf{H}_{2}\mathbf{0}]$

Conclusion

- A criterion for the shift of the volcano apex is proposed and proved under certain assumptions.
- Generalization of the criterion is done by relaxing the above assumptions and applicability of the criterion is tested.

